Comparison of a branched spike wheat with the cultivars Neepawa and HY320 for grain yield and yield components

1992 ◽  
Vol 72 (3) ◽  
pp. 671-677 ◽  
Author(s):  
P. Hucl ◽  
B. J. Fowler

Branched-spike spring wheat (Triticum turgidum L.) genotypes are periodically promoted in western Canada as having very high grain yield capacity. These "Miracle" wheats tend to have a low tillering capacity and may require higher plant populations in order to achieve maximum grain yield. This study was conducted to critically evaluate the high-yield claims of a branched-spike wheat (BSW) and to determine whether this cultivar has a higher optimum seeding rate requirement than the spring wheat (Triticum aestivum L.) cultivars Neepawa and HY320. The three cultivars were seeded at rates of 150, 250, 350, 450, and 550 seeds m−2 in each of three experiments: two dryland and one irrigated. Averaged over experiments and seeding rates the BSW yielded 45% less than the conventional cultivars. Significant (P < 0.05) cultivar × experiment cross-overs were detected for spikes m−2, spikelets spike−1, and kernels spike−1. BSW and HY320 switched ranks for spikes m−2, spikelets spike−1 and kernels spike−1 in 1988 and 1989. In 1988, on average, BSW produced 230% as many fertile spikelets as the other cultivars, but 40% fewer spikelets in 1989. Similarly, BSW produced more kernels spike−1 than Neepawa and HY320 in 1988 while the reverse was observed in 1989. The three cultivars responded differently to seeding rate, as indicated by significant (P < 0.01) cultivar × seeding rate interaction for spikelets spike−1 and kernel weight. Neither of these interactions involved significant changes in cultivar rank from one seeding rate to the next. BSW yielded less grain than either Neepawa or HY320, regardless of seeding rate. Attempts to increase the grain yield of a BSW cultivar by manipulating yield components via increased seeding rates were not successful.Key words: Branched-spike, spring wheat, seeding rate, Triticum turgidum L.

2020 ◽  
Vol 70 (4) ◽  
pp. 221-236
Author(s):  
Reinhard W. Neugschwandtner ◽  
Johanna Winkler ◽  
Maria Bernhart ◽  
Michael A. Pucher ◽  
Martin Klug ◽  
...  

Summary Soybean crop management have not been studied much in Central Europe as compared with cereals. We assessed the effect of variety, row spacing, seeding rate and nitrogen (N) fertilization on yields and yield components of soybean in a two-year experiment in Gleisdorf, Austria. The varieties Lenka, Naya and Xonia were tested in row spacings of 13 cm, 38 cm and 76 cm with 30 germinable seeds m−2. Additionally, 60 seeds m−2 were tested at 13 cm row spacing, and 38 cm row spacing was additionally established with N fertilization. Faster soil coverage was obtained with a high seeding rate or narrower row spacings. First pod height differed between varieties and increased with higher seeding rate. Grain yield was not affected by treatments but yield components differed. The widest row spacing resulted in a lower plant density but more pods plant−1, grains plant−1, grains pod−1 (in one year) and a higher thousand kernel weight (TKW). The higher seeding rate resulted in a higher plant density but less pods plant−1 whereas grains pod−1 and TKW did not differ. N fertilization did not affect the grain yield. Correlation analysis showed a high adaptability of soybean to different seeding rates and row spacings through modulation of yield components.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


1980 ◽  
Vol 60 (4) ◽  
pp. 1141-1146 ◽  
Author(s):  
H. G. NASS

The use of harvest index as a selection criterion for grain yield in F2 populations of spring wheat (Triticum aestivum L.) grown at two population densities was investigated. Harvest index was useful in delineating yield differences between lines for both crosses. The F4 lines selected in F2 for a high harvest index yielded about 9% more per plot in 1978 than F4 lines having a low harvest index in F2. Generally, lines selected at the higher commercial seeding rate yielded more than lines selected at the lower plant density. In 1979, a heavy Fusarium infection reduced the mean grain yield of the F6 lines and suppressed any significant response to selection resulting from population density and harvest index in F2. While selection based on high harvest index at low population density can be used to select higher yielding plants it was not as effective as selection at high population density which more closely approximates commercial crop densities. Additional research is needed before the use of harvest index as a selection tool in wheat breeding programs can be recommended for use in Atlantic Canada.


2009 ◽  
Vol 89 (5) ◽  
pp. 945-951 ◽  
Author(s):  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
J M Clarke ◽  
T N McCaig

Based on 34 replicated trials over 3 yr, Stettler, a doubled haploid hard red spring wheat (Triticum aestivum L.), expressed significantly higher grain yield than all checks except Superb. Wheat and flour protein concentration were significantly greater than all of the checks except Lillian. It matured significantly later than AC Barrie and Katepwa but earlier than Superb. Stettler was significantly shorter than all of the checks except Superb and was more resistant to lodging than Katepwa and Laura. Stettler had high grain volume weight and intermediate kernel weight relative to the checks, and meets the end-use quality specifications of the Canada Western Red Spring wheat market class. Stettler expressed resistance to prevalent races of stem rust, common bunt and loose smut, with moderate susceptibility to prevalent races of leaf rust and fusarium head blight.Key words: Triticum aestivum L., cultivar description, grain yield, protein, disease resistance, doubled haploid


1982 ◽  
Vol 62 (2) ◽  
pp. 285-291 ◽  
Author(s):  
R. J. BAKER

Eight cultivars of spring wheat, Triticum aestivum L., were evaluated at seeding rates of 110, 270 and 430 seeds/m2 in a total of nine experiments spanning three locations, two dates of seeding and 2 yr. Grain yield exhibited a significant cultivar × experiment × linear response to seeding rate interaction. Grain yield of Pitic 62 showed a significant decrease with increased seeding rate in one experiment while giving the greatest increase in another. Over all experiments, the highest seeding rate gave the highest grain yield. For straw yield, Chester showed the greatest response to seed rate, Canuck the least. With the exception of Canuck, which showed a significant increase in harvest index with increased seeding rate, harvest index tended to be greater at the intermediate seeding rate.


1977 ◽  
Vol 57 (3) ◽  
pp. 1005-1007 ◽  
Author(s):  
R. J. BAKER

Yield and yield components were measured on two spring wheat (Triticum aestivum L. em Thell) cultivars, Neepawa and Pitic 62, and a 1:1 mixture of the two sown at five rates of seeding in each of 2 yr. Lack of agreement between performance in pure and mixed stands was observed when, at the highest seeding rate, the mixture yielded higher in 1974 and lower in 1976 than either of the component cultivars grown in pure stand.


Author(s):  
Kyle Isham ◽  
Rui Wang ◽  
Weidong Zhao ◽  
Justin Wheeler ◽  
Natalie Klassen ◽  
...  

Abstract Key message Four genomic regions on chromosomes 4A, 6A, 7B, and 7D were discovered, each with multiple tightly linked QTL (QTL clusters) associated with two to three yield components. The 7D QTL cluster was associated with grain yield, fertile spikelet number per spike, thousand kernel weight, and heading date. It was located in the flanking region of FT-D1, a homolog gene of Arabidopsis FLOWERING LOCUS T, a major gene that regulates wheat flowering. Abstract Genetic manipulation of yield components is an important approach to increase grain yield in wheat (Triticum aestivum). The present study used a mapping population comprised of 181 doubled haploid lines derived from two high-yielding spring wheat cultivars, UI Platinum and LCS Star. The two cultivars and the derived population were assessed for six traits in eight field trials primarily in Idaho in the USA. The six traits were grain yield, fertile spikelet number per spike, productive tiller number per unit area, thousand kernel weight, heading date, and plant height. Quantitative Trait Locus (QTL) analysis of the six traits was conducted using 14,236 single-nucleotide polymorphism (SNP) markers generated from the wheat 90 K SNP and the exome and promoter capture arrays. Of the 19 QTL detected, 14 were clustered in four chromosomal regions on 4A, 6A, 7B and 7D. Each of the four QTL clusters was associated with multiple yield component traits, and these traits were often negatively correlated with one another. As a result, additional QTL dissection studies are needed to optimize trade-offs among yield component traits for specific production environments. Kompetitive allele-specific PCR markers for the four QTL clusters were developed and assessed in an elite spring wheat panel of 170 lines, and eight of the 14 QTL were validated. The two parents contain complementary alleles for the four QTL clusters, suggesting the possibility of improving grain yield via genetic recombination of yield component loci.


2014 ◽  
Vol 18 (2) ◽  
pp. 49-55
Author(s):  
MA Jahan ◽  
MS Hossain ◽  
M Khalekuzzaman ◽  
MM Hassan

Norin 10 based dwarfing genes (Rht1 and Rht2) have been widely exploited for increasing the grain yield in bread wheat (Triticum aestivum L.) by improving partitioning of assimilates to grain. Eight semi-dwarf wheat genotypes having either Rht1 or Rht2 dwarfing genes were compared with a tall control named, Kheri (rht) having no dwarfing genes were evaluated at Rajshahi University, Bangladesh for yield and yield contributing traits. Significant differences in grain yield and yield components were observed in genotypes under study showing the effects of dwarfing genes. Genotype Seri 82 (Rht1) and Kanchan (Rht2) had medium plant height of 75.73 and 72.22 cm respectively, highest number of tillers/plant (7.33 and 7.67), highest number of spikes/plant (6.33 and 6.67) resulted the highest grain yield per plant. Because the dwarfing genes not only provide lodging tolerance but also perhaps pleiotropically affected high yield by allowing more tillers to survive. Number of tillers/plant and number of spikes/plant showed very strong positive correlation with grain yield per plant in all the genotypes. Kheri (rht) with highest plant height (95.17cm) reduced number of tillers/plant (4.00) and spikes/plant (3.67) had the lowest grain yield per plant (3.85g). Aghrani possessed significantly the highest number of grains/spike with medium grain yield/plant (5.94g). The degree of relationship varied from genotype to genotype.DOI: http://dx.doi.org/10.3329/pa.v18i2.18075 Progress. Agric. 18(2): 49 - 55, 2007


2001 ◽  
Vol 81 (4) ◽  
pp. 885-890 ◽  
Author(s):  
Adrian M. Johnston ◽  
F. Craig Stevenson

Air (pneumatic) seeding systems that have seed row opener options that spread seed rather than place it in distinct rows may allow producers to uniformly distribute plants and increase seeding rates to improve cereal crop yield. A study was conducted to determine if seed placement configuration influenced hard red spring wheat (Triticum aestivum L.) response to seeding rate. The study was carried out at Melfort, SK, from 1997 to 1999, using three seed configurations (23 cm and 30 cm distinct row with a hoe opener; and a 20 cm spread using a 28 cm sweep on 23 cm row spacing) and four seeding rates (67, 100, 134, and 167 kg ha–1). Grain yield increased 6% when seeding rate was increased from 100 (recommended rate) to 168 kg ha–1 in 1997. Improved grain yield with increased seeding rates was related to greater kernels head–1. In the 2 following years, yield decreased by 9% when seeding rate was increased from 100 to 168 kg ha–1. Yield reductions in these years were associated with high yield potential (high soil N availability) and lodging, that in turn resulted in decreased kernels head–1 and kernel weight with increased seeding rates. Grain yield did not differ between the sweep and distinct rows, regardless of the seeding rate. Furthermore, the similar yields among the three seed configurations occurred despite lodging being less with sweeps compared with 23 or 30 cm row spacing at the highest seeding rate in 1998. The increased distance between wheat plants with sweeps did not improve grain yields as a result of reduced inter-plant competition, regardless of seeding rate. This absence of grain yield differences between the sweep and distinct row placement illustrates the yield stability associated with Canadian hard red spring wheat cultivars through yield component compensation. Key words: Wheat (Triticum aestivum L.), row spacing, seeding rate, lodging, seed placement


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Graham R. S. Collier ◽  
Dean M. Spaner ◽  
Robert J. Graf ◽  
Brian L. Beres

Ultra-early seeding of spring wheat (Triticum aestivum L.) on the northern Great Plains can increase grain yield and grain yield stability compared to current spring wheat planting systems. Field trials were conducted in western Canada from 2015 to 2018 to evaluate the impact of optimal agronomic management on grain yield, quality, and stability in ultra-early wheat seeding systems. Four planting times initiated by soil temperature triggers were evaluated. The earliest planting was triggered when soils reached 0–2.5 °C at a 5 cm depth, with the subsequent three plantings completed at 2.5 °C intervals up to soil temperatures of 10 °C. Two spring wheat lines were seeded at each planting date at two seeding depths (2.5 and 5 cm), and two seeding rates (200 and 400 seeds m−2). The greatest grain yield and stability occurred from combinations of the earliest seeding dates, high seeding rate, and shallow seeding depth; wheat line did not influence grain yield. Grain protein content was greater at later seeding dates; however, the greater grain yield at earlier seeding dates resulted in more protein production per unit area. Despite extreme ambient air temperatures below 0 °C after planting, plant survival was not reduced at the earliest seeding dates. Planting wheat as soon as feasible after soil temperatures reach 0 °C, and prior to soils reaching 7.5–10 °C, at an optimal seeding rate and shallow seeding depth increased grain yield and stability compared to current seeding practices. Adopting ultra-early wheat seeding systems on the northern Great Plains will lead to additional grain yield benefits as climate change continues to increase annual average growing season temperatures.


Sign in / Sign up

Export Citation Format

Share Document