Productivity, water use and nitrogen fixation of annual-legume green-manure crops in the Dark Brown soil zone of Saskatchewan

1993 ◽  
Vol 73 (1) ◽  
pp. 139-148 ◽  
Author(s):  
L. Townley-Smith ◽  
A. E. Slinkard ◽  
L. D. Bailey ◽  
V. O. Biederbeck ◽  
W. A. Rice

Both large-seeded annual legumes (pulse crops) and small-seeded annual or perennial legumes (forage crops) fix nitrogen (N) and can improve soil organic matter and fertility when used for green manuring. The role of pulses as green-manure crops has not been adequately evaluated in the Prairies, as they have been grown primarily as cash seed crops. An experiment was conducted in the Dark Brown soil zone at Saskatoon over four growing seasons on a moderately heavy-textured soil to determine the productivity, nitrogen fixation and soil moisture use of pea (Pisum sativum L. ’Trapper’), faba bean (Vicia faba L. ’Outlook’), lentil (Lens culinaris Medik. ’Eston’ and ’Indianhead’), Tangier flatpea (Lathyrus tingitanus L. ’Tinga’) and seedling alfalfa (Medicago sativa L. ’Moapa’) as green-manure substitutes for summerfallow. Dry-matter production (above ground) by full bloom averaged 6390, 4140, 3590, 2930 and 1260 kg ha−1 for pea, lentil, faba bean, Tangier flatpea and seedling alfalfa, respectively. Nitrogen yields were 166, 108, 119, 81 and 36 kg ha−1 and N fixation rates were 40, 15, 40, 24 and 4 kg ha−1 for pea, lentil, faba bean, Tangier flatpea and seedling alfalfa, respectively. Green-manure used similar amounts of water as wheat grown to maturity. Snow trapping by desiccating the standing green-manure crop was ineffective in increasing soil water in the spring. Low seeding rate and thus low cost of production made lentil the most reasonable choice as an annual-legume green-manure crop. However, improved methods of water conservation must be found to replace the water used to grow the green-manure crop. Key words: Pea, lentil, faba bean, Tangier flatpea, green manure, soil moisture

1993 ◽  
Vol 73 (2) ◽  
pp. 243-252 ◽  
Author(s):  
W. A. Rice ◽  
P. E. Olsen ◽  
L. D. Bailey ◽  
V. O. Biederbeck ◽  
A. E. Slinkard

Field studies were conducted on a Landry clay-loam soil (Black Solod) to evaluate the effects of green manuring Tangier flatpea (Lathyrus tingitanus 'Tinga'), lentil (Lens culinaris 'Indianhead') and alfalfa (Medicago sativa 'Moapa') on subsequent barley (Hordeum vulgare 'Galt') crops. Each trial consisted of separate legume phases planted in 1984, 1985 and 1986 and barley phases in each of the subsequent years. The flatpea and lentil were incorporated (green manured) in late July or in late August to early September. The alfalfa was incorporated in late August to early September. The 3-yr mean dry matter (DM) yields of lentil and Tangier flatpea varied from 1047 to 2308 kg ha−1, with considerable variability from year to year. Alfalfa, used as an annual legume, produced 812 kg DM ha−1. Dinitrogen fixation by the annual legumes, as assayed by acetylene reduction was 16 kg N ha−1 or less. Soil moisture measurements following the legumes showed 2–3 cm less water in the profile to a depth of 120 cm following alfalfa and late-incorporated Tangier flatpea than following summerfallow and early-incorporated lentil and Tangier flatpea. Ammonium-N levels in the soil were similar following the various legume green-manure treatments. Nitrate-N levels following the legumes were variable, but the levels of nitrate-N in the plots following legume incorporation generally followed the order: fallow > early incorporation > late incorporation. The grain and N yield of barley following early-incorporated lentil and flatpea were equal to or only slightly less than the yield following fallow, suggesting that annual legumes have a good potential as green-manure crops in place of fallow in Black Solod soils of the Peace River region. Key words: Legume plow-down, soil conservation, dinitrogen fixation, soil moisture, nitrate-N


2004 ◽  
Vol 84 (1) ◽  
pp. 11-22 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
F. Selles ◽  
R. Lemke ◽  
...  

In the Brown soil zone of western Canada summerfallowing (F) is traditionally used to reduce the water deficit associated with cereal production, but frequent use of this practice results in soil degradation and reduces the N-supplying capacity of soils. Some scientists suggest that an annual legume green manure crop (LGM) could be used as a partial-fallow replacement to protect the soil against erosion and increase its N fertility, particularly when combined with a snow-trapping technique to replenish soil water used by the legume. We assessed this possibility by comparing yields, N economy, water use efficiency, and economic returns for hard red spring wheat (W) (Triticum aestivum L.) grown in rotation with Indianhead black lentil (Lens culinaris Medikus) green manure (i.e., LGM-W-W) vs. that obtained in a traditional F-W-W system. Further, we assessed whether a change in manage ment of the LGM crop (i.e., moving to earlier seeding and earlier turn-down) was advantageous to the overall performance of this practice. The study was conducted over 12 yr (1988–99) on a medium-textured Orthic Brown Chernozem at Swift Current, Saskatchewan. Wheat stubble was left tall to trap snow, tillage was kept to a minimum, and the wheat was fertilized based on NO3 soil tests. When we examined results after 6 yr, we concluded that by waiting until full bloom to turn down the legume (usually late July or early August) so as to maximize N2 fixation, soil water was being depleted to the detriment of yields of the following wheat crop. The change in management of the LGM crop since 1993 resulted in wheat yields following LGM equaling those after fallow (due to improved water use efficiency), a gradual and significant increase over time in grain protein and in N yield of aboveground plant biomass of wheat in the LGM-W-W compared to the F-W-W system, plus a gradual decrease in fertilizer N requirements of wheat in the LGM system accompanying an improvement in the N supplying power of the soil. These savings in N fertilizer, together with savings in tillage and herbicide costs for weed control on partial-fallow vs. conventional-fallow areas, and higher revenues from the enhanced grain protein, more than offset the added costs for seed and management of the LGM crop. Thus, our results imply that, if producers seed the LGM in April and turn it down in early July, an annual LGM-cereal rotation is a viable option in the semiarid Canadian prairies; however, one negative consequence of adopting this management strategy is the possibility of enhancing NO3 leaching. Key words: Nitrogen yields, grain protein, green fallow, summerfallow substitute, economic returns, NO3 leaching


2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


2019 ◽  
Vol 46 (1) ◽  
pp. 131-139
Author(s):  
Qian-Lin XIAO ◽  
Rui-Ji YANG ◽  
Xin GUO ◽  
Lei HUANG ◽  
Yan-Jun GUO ◽  
...  

2006 ◽  
Vol 86 (2) ◽  
pp. 413-423 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
F. Selles ◽  
P. G. Jefferson ◽  
R. Lemke

Producers in the semiarid Brown soil zone of Saskatchewan have historically produced spring wheat (Triticum aestivum L.) in fallow-based rotations because these cropping systems are profitable and risk efficient; however, their use has also been most damaging to soil quality. New wheat types and management methods have been developed that may offer wheat producers opportunities to enhance economic returns, while improving environmental sustainability. This study compares the economic merits of reducing fallow (F) frequency, using an annual legume green manure (LGM) crop as a summer fallow replacement, adopting a flex-cropping approach based on available soil water reserves (if water) or the need to control problem weeds (if weeds), and the production of Canada Western Red Spring (CWRS) wheat (W) versus the higher yielding Canada Prairie Spring (CPS) wheat class (HY). The results are based on 15 yr of data from seven crop rotations included in an ongoing experiment being conducted on an Orthic Brown Chernozem at the Semiarid Prairie Agricultural Research Centre at Swift Current, Saskatchewan. The crop rotations included F-W-W, LGM-W-W, F-HY-HY, F-W-W-W, continuous W (Cont W), Cont W (if water), and Cont W (if weeds). Cropping systems were managed using conservation tillage practices. They were fertilized with recommended rates of N and P based on soil tests, and crop residue was maintained as tall as possible (usually > 30 cm) to enhance snow trapping. The 1988–2002 study period was characterized by above normal growing season precipitation; thus, grain yields were also above average for this region. Results showed that producers will earn the highest net return with Cont W ($41 ha-1), despite this rotation having the highest production costs. Net returns ranked second highest for F-W-W-W, F-HYHY, and the flex-crop rotations (about $15 ha-1 less than Cont W), and ranked lowest for F-W-W and LGM-W-W (about $25 ha-1 less). However, since 1993, when the LGM was managed more effectively than in the first 6 yr, LGM-W-W was more profitable than F-W-W. On average, it was more profitable to produce CPS compared with CWRS wheat when the CPS/CWRS price ratio was greater than 0.8. Producers who are highly averse to risk would still choose cropping systems that included some summer fallow, while those with lower risk aversion would choose Cont W, but with all-risk crop insurance. In the absence of an all-risk crop insurance program, producers would typically choose Cont W (if water), F-W-W-W, or F-W-W. We concluded that area producers, who practice conservation tillage management and use tall stubble for snowtrapping, can enhance farm income by moving to more intensive cropping systems, and while doing so, they will foster improved environmental sustainability. Key words: Crop rotations, wheat, summer fallow, legume green manure, flex-cropping, production costs, net returns, income variability


1996 ◽  
Vol 76 (3) ◽  
pp. 417-422 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
F. Selles

Frequent use of summerfallow (F) to reduce the water deficit associated with cereal cropping in the Canadian prairies has resulted in severe erosion and a reduction in N-supplying power of the soils. It has been suggested that it may be feasible to use annual legumes as green manure (GM) to supply the N requirements and snow trapping to enhance soil water recharge for a subsequent cereal crop. Our objective was to test the feasibility of employing this management strategy for the Brown soil zone of southwestern Saskatchewan, by comparing yields and N uptake of hard red spring wheat (W) (Triticum aestivum L.) grown in a 3-yr rotation with Indianhead black lentil (Lens culinaris Medikus) (i.e., GM-W-W) with that obtained in a monoculture wheat system (i.e., F-W-W). Both cropping systems were operated for 6 yr, from 1988 to 1993, with all phases of the rotations present each year. The results showed that grain yields of wheat after GM were generally significantly (P < 0.05) lower than those after F, primarily because the GM reduced the reserves of available spring soil water. These results occurred despite the fact that five of the six growing seasons had above average precipitation. Yields of wheat grown on stubble were unaffected by rotation. Grain N concentration was greater for wheat grown on GM partial-fallow than for wheat grown on conventional-F in the final 3 yr of the study which was due mainly to the lower wheat yields in the GM system (i.e., yield dilution). Our results suggest that, for annual legume GM to be used successfully in the Brown soil zone, producers should seed it as early as possible (late April to early May) and terminate the growth of the legume by the first week of July, even if this means foregoing some N2 fixation. Key words: Summerfallow, soil water, grain protein, N content, soil nitrogen


1987 ◽  
Vol 67 (4) ◽  
pp. 965-982 ◽  
Author(s):  
R. P. ZENTNER ◽  
C. A. CAMPBELL ◽  
E. D. SPRATT ◽  
H. REISDORF

The effects of crop sequence, rotation length, and fertilization on yields of spring wheat were examined for 14 crop rotations over a 25-yr period on a Black Chernozemic heavy clay soil at Indian Head, Saskatchewan. Plots that were fertilized with N and P received the generally recommended rates for the region during the first 18 yr but in the last 7 yr fertilizers were applied based on soil tests. Yields of fertilized wheat grown on fallow were similar for the 2-yr fallow-wheat and the 3-yr fallow-wheat-wheat rotations (25-yr avg. 2505 kg ha−1). Yields of fertilized wheat grown on stubble were also similar within the monoculture rotations. During the first 18 yr, yields of fertilized stubble-wheat averaged 1656 kg ha−1 or about 64% of comparable fallow-wheat yields; but, during the last 7 yr, stubble-wheat yields were generally similar to those obtained on fertilized fallow. Removal of the straw each year from a 3-yr fallow-wheat-wheat rotation did not affect fallow- or stubble-wheat yields. Application of recommended rates of N and P fertilizer increased the 25-yr fallow-wheat yields by 11% (from 2254 to 2505 kg ha−1); the yield increases were significant about 70% of the time. On stubble, application of N and P fertilizer increased wheat yields by 47% (from 1130 to 1656 kg ha−1) during 1960–1977 and by 142% (from 935 to 2263 kg ha−1) during 1978–1984. The yield increase from fertilizing stubble-wheat was significant in 24 of 25 yr. Including grass-legume forage, or legume green manure crops in the rotation increased yields of wheat grown on the unfertilized partial fallow by 15–24% and on unfertilized stubble by 33–71%; the yields were similar and sometimes higher than those obtained on fallow in the well-fertilized monoculture wheat rotations. In comparison, the yields of unfertilized stubble-wheat in the cereal-forage rotations were generally similar to those obtained on fertilized stubble in monoculture rotations during 1960–1977, though they were lower during 1978–1984 when the monoculture rotations began receiving fertilizer based on soil tests. Yields of wheat grown on flax stubble that received fertilizer at the average rate of 68 kg ha−1 N plus 22 kg ha−1 P2O5 since 1978 were generally similar to yields obtained on fertilized fallow (avg. 2546 kg ha−1). These yields averaged 13% higher than yields of wheat grown on cereal stubble in monoculture rotations that received slightly more fertilizer N. Yields of fallow- and stubble-wheat were generally maintained over time with the application of recommended rates of N and P fertilizers, or by inclusion of legume-forage crops in the rotation, but yields of unfertilized stubble-wheat declined with time possibly reflecting declining soil fertility.Key words: Wheat, nitrogen and phosphorous fertilizer, crop sequence, cereal forage rotations, legume green manure crops


2015 ◽  
Vol 95 (1) ◽  
pp. 27-36 ◽  
Author(s):  
J. J. Miller ◽  
D. S. Chanasyk

Miller, J. J. and Chanasyk, A. S. 2015. Unsaturated water flux at mid and lower slope positions within an inclined landscape of the Dark Brown soil zone in southern Alberta. Can. J. Soil Sci. 95: 27–36. Little research has quantified vertical-unsaturated water flux below the root zone for mid and lower slope positions within inclined, low-relief, and longer-slope landscapes of the Dark Brown soil zone of the Canadian prairies. We measured soil moisture (0.23–1.22 m) in the field at mid and lower slope positions in southern Alberta from May to October in 1985 and 1986. Undisturbed soil cores were taken from soil horizons and saturated hydraulic conductivity and soil moisture retention were determined in the laboratory. Vertical-unsaturated water flux below the root zone was calculated between 1.07 and 1.22 m depths below ground surface using the hydraulic gradient method. Water fluxes for the 2 yr ranged from <10−11 to 10−10 m s−1 at the mid slope position, and from <10−11 m s−1 to 10−9 m s−1 at the lower slope position, and were consistent with some other studies. Cumulative water flux was dominantly downward (−2.2 to −3.4 mm) at the mid slope position and this flow direction was consistent with this Orthic Dark Brown Chernozemic soil that was located in a “recharge area”. Cumulative water flux was dominantly upward at the lower slope position in 1985 (1.4 mm) and dominantly downward but of very low magnitude in 1986 (−0.1 mm), and this flow direction was consistent with this saline Gleyed Regosol and “saline seep”. Cumulative water fluxes as a percentage of annual precipitation were 0.8 to 1.8% at the mid slope position and 0.3 to 0.5% at the lower slope position.


Sign in / Sign up

Export Citation Format

Share Document