Long-term assessment of management of an annual legume green manure crop for fallow replacement in the Brown soil zone

2004 ◽  
Vol 84 (1) ◽  
pp. 11-22 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
F. Selles ◽  
R. Lemke ◽  
...  

In the Brown soil zone of western Canada summerfallowing (F) is traditionally used to reduce the water deficit associated with cereal production, but frequent use of this practice results in soil degradation and reduces the N-supplying capacity of soils. Some scientists suggest that an annual legume green manure crop (LGM) could be used as a partial-fallow replacement to protect the soil against erosion and increase its N fertility, particularly when combined with a snow-trapping technique to replenish soil water used by the legume. We assessed this possibility by comparing yields, N economy, water use efficiency, and economic returns for hard red spring wheat (W) (Triticum aestivum L.) grown in rotation with Indianhead black lentil (Lens culinaris Medikus) green manure (i.e., LGM-W-W) vs. that obtained in a traditional F-W-W system. Further, we assessed whether a change in manage ment of the LGM crop (i.e., moving to earlier seeding and earlier turn-down) was advantageous to the overall performance of this practice. The study was conducted over 12 yr (1988–99) on a medium-textured Orthic Brown Chernozem at Swift Current, Saskatchewan. Wheat stubble was left tall to trap snow, tillage was kept to a minimum, and the wheat was fertilized based on NO3 soil tests. When we examined results after 6 yr, we concluded that by waiting until full bloom to turn down the legume (usually late July or early August) so as to maximize N2 fixation, soil water was being depleted to the detriment of yields of the following wheat crop. The change in management of the LGM crop since 1993 resulted in wheat yields following LGM equaling those after fallow (due to improved water use efficiency), a gradual and significant increase over time in grain protein and in N yield of aboveground plant biomass of wheat in the LGM-W-W compared to the F-W-W system, plus a gradual decrease in fertilizer N requirements of wheat in the LGM system accompanying an improvement in the N supplying power of the soil. These savings in N fertilizer, together with savings in tillage and herbicide costs for weed control on partial-fallow vs. conventional-fallow areas, and higher revenues from the enhanced grain protein, more than offset the added costs for seed and management of the LGM crop. Thus, our results imply that, if producers seed the LGM in April and turn it down in early July, an annual LGM-cereal rotation is a viable option in the semiarid Canadian prairies; however, one negative consequence of adopting this management strategy is the possibility of enhancing NO3 leaching. Key words: Nitrogen yields, grain protein, green fallow, summerfallow substitute, economic returns, NO3 leaching

2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2010 ◽  
Vol 90 (4) ◽  
pp. 489-497 ◽  
Author(s):  
H W Cutforth ◽  
P G Jefferson ◽  
C A Campbell ◽  
R H Ljunggren

In the semiarid prairie of western Canada, there is renewed interest for including short durations (≤3 yr) of perennial forage in rotations with annual crops. However, there are producers who want to grow longer durations (≥4 yr) of perennial forages in rotational systems. Therefore, we assessed spring wheat (Triticum aestivum L.) yield, grain protein, and water use efficiency following 6 yr of either crested wheatgrass [Agropyron cristatum (L.) Gaertn.], or alfalfa (Medicago sativa L.), or wheat, and then 1 yr of fallow. Yield, water use, and water use efficiency were significantly lower in the first year of spring wheat production (2000) when the prior crop was crested wheatgrass or alfalfa than when it was wheat. In the second year (2001), which was a near record drought year, wheat yield and water use were significantly lower when the prior crop was alfalfa than when it was grass or wheat. From 2002 to 2005, there were no consistent differences in water use, water use efficiency, or yield of wheat due to the prior perennial crop. Wheat grain protein concentration was significantly higher following alfalfa compared with following crested wheatgrass or continuous spring wheat from 2000 to 2005. This effect was attributed to the higher N-supplying power of the soil following alfalfa. Soil water content below the rooting depth of most annual crops (≥120 cm depth) was reduced by the prior alfalfa crop, and there was no evidence from 2000 to 2005 that soil water recharge was occurring below the 150-cm depth. Key words: Semiarid prairie, alfalfa, grass, spring wheat, yield, protein, water use


2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Maricar Aguilos ◽  
Clément Stahl ◽  
Benoit Burban ◽  
Bruno Hérault ◽  
Elodie Courtois ◽  
...  

Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Sign in / Sign up

Export Citation Format

Share Document