Phosphorus accumulation and leaching in two irrigated soils with incremental rates of cattle manure

2010 ◽  
Vol 90 (2) ◽  
pp. 355-362 ◽  
Author(s):  
B M Olson ◽  
E. Bremer ◽  
R H McKenzie ◽  
D R Bennett

The risk of P leaching increases on land that receives manure at rates sufficient to meet crop N requirements, but calcareous subsoils may minimize P loss due to P adsorption. An 8-yr field experiment was conducted to determine the effects of different rates of manure on the accumulation and leaching of soil P in a coarse-textured (CT) soil and a medium-textured (MT) soil under typical irrigation management in southern Alberta. Treatments included a non-manured control and four rates of cattle (Bos taurus) manure (20, 40, 60, and 120 Mg ha-1 yr-1, wet-weight basis). In manured treatments, P addition ranged from about 80 to 450 kg P ha-1 yr-1, while P removal by annual cereal silage crops ranged from 15 to 22 kg P ha-1 yr-1. High soil test P (STP) concentrations occurred to a depth of 0.6 m at the CT site and 0.3 m at the MT site. Increase in STP concentration to 0.6 m was equivalent to 43% of net P input, and increase in total soil P was equivalent to 78% of net P input. Non-recovery of net P input suggests that P loss by leaching occurred at these sites and that leaching was more prevalent at the CT site. These calcareous soils have considerable potential to hold surplus P, but may still allow P leaching.Key words: Manure, phosphorus dynamics, soil test phosphorus, phosphorus leaching, soil texture

2008 ◽  
Vol 16 (4) ◽  
pp. 301 ◽  
Author(s):  
R. UUSITALO ◽  
E. TURTOLA ◽  
J. GRÖNROOS

Soil test phosphorus (P) concentration has a major influence on the dissolved P concentration in runoff from agricultural soils. Thus, trends in soil test P partly determine the development of pollution potential of agricultural activities. We reviewed the changes of soil test P and P balances in Finnish agriculture, and assessed the current setting of P loss potential after two Agri-Environmental Programs. Phosphorus balance of the Finnish agriculture has decreased from +35 kg ha–1 of the 1980’s to about +8 kg P ha–1 today. As a consequence, the 50-yr upward trend in soil test P concentrations has probably levelled out in the late 1990’s, as suggested by sampling of about 1600 fields and by a modelling exercise. For the majority of our agricultural soils, soil test P concentrations are currently at a level at which annual P fertilization is unlikely to give measurable yield responses. Soils that benefit from annual P applications are more often found in farms specialized in cereal production, whereas farms specialized in non-cereal plant production and animal production have higher soil test P concentrations. An imbalance in P cycling between plant (feed) and animal production is obvious, and regional imbalances are a result of concentration of animal farms in some parts of the country. A major concern in future will be the fate of manure P in those regions where animal production intensity is further increasing.;


2007 ◽  
Vol 87 (1) ◽  
pp. 73-83 ◽  
Author(s):  
D. Kimaragamage ◽  
O O Akinremi ◽  
D. Flaten ◽  
J. Heard

Quantitative relationships between soil test phosphorus (STP) methods are needed to guide P management especially in manured soils with high P. Our objectives were: (i) to compare amounts of P extracted by different methods; (ii) to develop and verify regression equations to convert results among methods; and (iii) to establish environmental P thresholds for different methods, in manured and non-manured soils of Manitoba. We analyzed 214 surface soil samples (0–15 cm), of which 51 had previous manure application. Agronomic STP methods were Olsen (O-P), Mehlich-3 (M3-P), Kelowna-1 (original; K1-P), Kelowna-2 (modified; K2-P), Kelowna-3 (modified; K3-P), Bray-1 (B1-P) and Miller and Axley (MA-P), while environmental STP methods were water extractable (W-P), Ca Cl2 extractable (Ca-P) and iron oxide impregnated filter paper (FeO-P) methods. The different methods extracted different amounts of P, but were linearly correlated. For an O-P range of 0–30 mg kg-1, relationships between O-P and other STP were similar for manured and nonmanured soils, but the relationships diverged at higher O-P levels, indicating that one STP cannot be reliably converted to another using a single equation for manured and non-manured soils at environmentally critical P levels (0–100 mg kg-1 O-P). Suggested environmental soil P threshold ranges, in mg P kg-1, were 88–118 for O-P, 138–184 for K1-P, 108–143 for K2-P, 103–137 for K3-P, 96–128 for B1-P, 84–111 for MA-P, 15–20 for W-P, 5–8 for Ca-P and 85–111 for FeO-P. Key words: Phosphorus, soil test phosphorus, manured soils, non-manured soils, environmental threshold


2003 ◽  
Vol 83 (4) ◽  
pp. 443-449 ◽  
Author(s):  
R. H. McKenzie ◽  
E. Bremer

Soil tests for available P may not be accurate because they do not measure the appropriate P fraction in soil. A sequential extraction technique (modified Hedley method) was used to determine if soil test P methods were accurately assessing available pools and if predictions of fertilizer response could be improved by the inclusion of other soil P fractions. A total of 145 soils were analyzed from field P fertilizer experiments conducted across Alberta from 1991 to 1993. Inorganic P (Pi) removed by extraction with an anion-exchange resin (resin P) was highly correlated with the Olsen and Kelowna-type soil test P methods and had a similar relationship with P fertilizer response. No appreciable improvement in the fit of available P with P fertilizer response was achieved by including any of the less available P fractions in the regression of P fertilizer response with available P. Little Pi was extractable in alkaline solutions (bicarbonate and NaOH), particularly in soils from the Brown and Dark Brown soil zones. Alkaline fractions were the most closely related to resin P, but the relationship depended on soil zone. Inorganic P extractable in dilute HCl was most strongly correlated with soil pH, reflecting accumulation in calcareous soils, while Pi extractable in concentrated acids (HCl and H2SO4) was most strongly correlated with clay concentration. A positive but weak relationship as observed between these fractions and resin P. Complete fractionation of soil P confirmed that soil test P methods were assessing exchangeable, plant-available P. Key words: Hedley phosphorus fractionation, resin, Olsen, Kelowna


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 503 ◽  
Author(s):  
MDA Bolland ◽  
IR Wilson ◽  
DG Allen

Twenty-three virgin Western Australian soils of different buffer capacities (BC) for phosphorus (P) were collected. The effects of BC on the relationships between Colwell soil test P and the level of P applied, yield and soil test P, and yield and the level of P applied were studied. Wheat (Triticum aestivum cv. Reeves), grown for 27 days in a glasshouse, was used. Two methods of measuring P sorption of soils, P buffer capacity (PBC) and P retention index (PRI), were used. The PBC is determined from a multi-point sorption curve. The PRI is a new, diagnostic, one-point, sorption method now widely used for commercial soil P testing in Western Australia. Both PBC and PRI produced similar results. The relationship between soil test P and the level of P applied was adequately described by a linear equation. When the slope coefficient of the linear equations was related to PBC or PRI, there was no relationship. The other two relationships were adequately described by a Mitscherlich equation. When the curvature coefficient of the Mitscherlich equation was related to PBC or PRI, the trend was for the value of the coefficient to decrease with increasing PBC or PRI. Consequently, as the capacity of the soil to sorb P increased the trend was for larger soil test P or higher levels of P application to produce the same yield.


Soil Research ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 243
Author(s):  
MDA Bolland ◽  
DG Allen

Five levels of phosphorus (P), as powdered single superphosphate, were incubated in moist soil (field capacity) for 42 days at 50�C in six different soils collected from south-western Australia. The soils were then air-dried for 7 days. Some subsamples of air-dry soil were stored for 180 days at 0�C in a cold room. Other subsamples were stored at fluctuating room temperature (18–25�C) in a laboratory and were sampled at 30, 60, 120, 150 and 180 days after storage to measure bicarbonate-extractable P (soil-test P) by the Olsen and Colwell procedures. No changes in soil-test P were detected while air-dry soil samples were stored at 0�C or room temperature.


Soil Research ◽  
2010 ◽  
Vol 48 (8) ◽  
pp. 682 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. K. Russell

Soil testing was conducted during 1999–2009 to determine lime and fertiliser phosphorus (P), potassium (K), and sulfur (S) requirements of intensively grazed, rain-fed, ryegrass dairy pastures in 48 paddocks on sand to sandy loam soils in the Mediterranean-type climate of south-western Australia. The study demonstrated that tissue testing was required in conjunction with soil testing to confirm decisions based on soil testing, and to assess management decisions for elements not covered by soil testing. Soil testing for pH was reliable for indicating paddocks requiring lime to ameliorate soil acidity, and to monitor progress of liming. Soil P testing proved reliable for indicating when P fertiliser applications were required, with no P being required when soil-test P was above the critical value for that soil, and when no P was applied, tissue testing indicated that P remained adequate for ryegrass production. Soil testing could not be used to determine paddocks requiring fertiliser K and S, because both elements can leach below the root-zone, with rainfall determining the extent of leaching and magnitude of the decrease in pasture production resulting from deficiency, which cannot be predicted. The solution is to apply fertiliser K and S each year, and use tissue testing to improve fertiliser K and S management. Research has shown that, for dairy and other grazing industries in the region, laboratories need measure and report every year soil pH and soil-test P only, together with measuring every 3–5 years the P-buffering index (estimating P sorption of soil), organic carbon content, and electrical conductivity.


2006 ◽  
Vol 53 (2) ◽  
pp. 303-310 ◽  
Author(s):  
E. van Bochove ◽  
G. Thériault ◽  
F. Dechmi ◽  
A.N. Rousseau ◽  
R. Quilbé ◽  
...  

The indicator of risk of water contamination by phosphorus (IROWC_P) is designed to estimate where the risk of water P contamination by agriculture is high, and how this risk is changing over time based on the five-year period of data Census frequency. Firstly developed for the province of Quebec (2000), this paper presents an improved version of IROWC_P (intended to be released in 2008), which will be extended to all watersheds and Soil Landscape of Canada (SLC) polygons (scale 1:1, 000, 000) with more than 5% of agriculture. There are three objectives: (i) create a soil phosphorus saturation database for dominant and subdominant soil series of SLC polygons – the soil P saturation values are estimated by the ratio of soil test P to soil P sorption capacity; (ii) calculate an annual P balance considering crop residue P, manure P, and inorganic fertilizer P – agricultural and manure management practices will also be considered; and (iii) develop a transport-hydrology component including P transport estimation by runoff mechanisms (water balance factor, topographic index) and soil erosion, and the area connectivity to water (artificial drainage, soil macropores, and surface water bodies).


2013 ◽  
Vol 48 (4) ◽  
pp. 344-357 ◽  
Author(s):  
Alaba Boluwade ◽  
C. A. Madramootoo

Missisquoi Bay, located in southern Quebec at the north-eastern extremity of Lake Champlain, is subject to eutrophication arising from excess nutrients, predominantly phosphorus (P), contributed by agricultural watersheds. Factors such as land use pattern, management practices, soil properties and geomorphology have an impact on soil P levels. Land patches under different management practices introduce a cyclic pattern, especially when fitting the variogram. Geostatistics procedures were used to model soil test phosphorus (STP) within the 11 km2 Castor Watershed in southern Quebec, Canada. An ordinary kriging (OK) method was used to estimate STP at unsampled points, but this had a smoothing effect, resulting in an underestimation of high values and overestimation of low values. Therefore, a more efficient technique was needed to draw predictions from the conditional probability distribution at the simulation grid nodes. A sequential Gaussian simulation (SGS) was adopted for this purpose, and used to create 50 equal probable realizations. Uncertainty was modelled using the E-type (mean) of the realizations, which ranged from 12.5 to 223 mg P kg–1 soil. The adequate spatial probability pattern for STP is a valuable criterion when seeking to delineate areas of high STP for site-specific best management practices (BMPs).


2018 ◽  
Vol 102 (4) ◽  
pp. 11-13
Author(s):  
Florencia Sucunza ◽  
Flavio Gutiérrez Boem ◽  
Fernando García ◽  
Miguel Boxler ◽  
Gerardo Rubio

Data from long-term crop rotation study sites were combined to evaluate the effect of long-term application (and omission) of P fertilizers. The impact of maintaining either a negative or positive P balances on soil test P at five distinct sites was described by single response functions despite a range of differences in soil properties.


2012 ◽  
Vol 92 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Chunyu Song ◽  
Xingyi Zhang ◽  
Xiaobing Liu ◽  
Yuan Chen

Song, C., Zhang, X., Liu, X. and Chen, Y. 2012. Effect of soil temperature and moisture on soil test P with different extractants. Can. J. Soil Sci. 92: 537–542. Temperature and moisture are important factors affecting adsorption, transformation and the availability of soil phosphorus (P) to plants. The different temperatures and moisture contents at which soil is sampled might affect the results of soil test P (STP). In order to evaluate the effect of the temperature and moisture, as well as the fertilization level, on the results of soil test P, an incubation study involving three soil temperatures (5, 10, and 20°C), and three soil moisture contents (50, 70, 90% of field water-holding capacity) was conducted with Chinese Mollisols collected from four fertilization treatments in a long-term experiment in northeast China. Four soil P test methods, Mehlich 3, Morgan, Olsen and Bray 1 were used to determine STP after a 42-d incubation. The effect of temperature and moisture on STP varied among soil P tests. Averaged across the four fertilization treatments, the temperature had significant impact on STP, while the responses varied among soil P test methods. Mehlich 3, Morgan and Bray 1 STP decreased and Olsen STP increased with increase in temperature. Effect of soil moisture was only significant for Mehlich 3 P and Olsen P. Soil temperature had greater impact on STP than soil moisture content. The responses of the Olsen method to temperature differed from the other three methods tested. The interaction between soil temperature and soil moisture on soil test P was only significant for Mehlich 3 P. Fertilization level does not affect the STP in as a clear pattern as the temperature and moisture varied for all four methods. Consistent soil sampling conditions, especially the soil temperature, appear to be the first step to achieve a reliable STP for any soil P test.


Sign in / Sign up

Export Citation Format

Share Document