INFLUENCE OF BULK DENSITY AND FIELD STRUCTURE OF SOIL ON THE CALIBRATION CURVES OF GYPSUM MOISTURE BLOCKS

1959 ◽  
Vol 39 (1) ◽  
pp. 12-19
Author(s):  
S. J. Bocrget

Gypsum moisture blocks were calibrated in the laboratory in undisrupted soil cores, in soil cores which had been repacked to field density, and in unpacked soil baskets. Three soil types were used. It was found that the calibration curves obtained in the repacked soil cores and in the soil baskets were different from those obtained in the undisrupted soil cores. This indicates that the disruption of both structure and bulk density influenced the calibration of gypsum blocks. The effects were greater on the fine textured than on the coarse textured soils. The influence of bulk density was not important on a sandy loam soil. The variations in soil moisture obtained ranged from 1 to 6 per cent within the available water range.

Geoderma ◽  
2019 ◽  
Vol 347 ◽  
pp. 194-202 ◽  
Author(s):  
Frank G.A. Verheijen ◽  
Anna Zhuravel ◽  
Flávio C. Silva ◽  
António Amaro ◽  
Meni Ben-Hur ◽  
...  

1969 ◽  
Vol 9 (39) ◽  
pp. 428 ◽  
Author(s):  
VF McClelland

The production and persistence of nine cultivars of lucerne were studied at the Mallee Research Station, Walpeup, Victoria, over three seasons. Hunter River, Siro Peruvian, and African lucerne were similar in yield, but Siro Peruvian was less persistent. The superior yield of these three cultivars over two accessions of Flandria, Du Puits, and Socheville was largely due to their greater winter production. Two lines of Canadian creeping-rooted lucerne were found to be entirely unsuited to this district. Hunter River and Siro Peruvian lucerne were also compared on a sand and a sandy loam soil at Walpeup. The relative production of the two cultivars was the same on the two soil types but the effect of soil type was marked. The production and persistence of lucerne grown on the sand was far superior to that on the sandy loam.


Weed Science ◽  
1968 ◽  
Vol 16 (4) ◽  
pp. 494-498 ◽  
Author(s):  
A. F. Wiese ◽  
E. B. Hudspeth

In a 3-year study on four soil types, subsurface application just ahead of a planter with a device that removed the top from the bed, applied a band of spray, and covered the band with soil reduced weed control in cotton (Gossypium hirsutum L.) obtained with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), 2,4-bis(isopropylamino)-6-methylmercapto-s-triazine (prometryne), 3-(hexahydro-4,7-methanoindan-5-yl)-1,1-dimethylurea (norea), dimethyl-2,3,5,6-tetrachloroterephthalate (DCPA), and 1,1-dimethyl-3(α,α,α,-trifluoro-m-tolyl)urea (fluometuron) compared to applications on the soil surface. This machine improved weed control with α,α,α,-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin). Shallow incorporation, with two helical blades, after planting increased weed control with trifluralin, diuron, and DCPA by 10% or more over the surface applications. This incorporator increased weed control obtained with prometryne and norea 5%. Very shallow incorporation, with metal tines, after planting improved weed control obtained with trifluralin and DCPA 18 and 11%, respectively. Weed control with norea was increased 7%, but metal tines did not appreciably affect weed control obtained with prometryne, diuron, or fluometuron. Compared to surface applications, incorporation increased cotton injury with diuron, norea, prometryne, and fluometuron on sandy loam soil.


2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


2005 ◽  
Vol 84 (1) ◽  
pp. 41-53 ◽  
Author(s):  
R.F. Dam ◽  
B.B. Mehdi ◽  
M.S.E. Burgess ◽  
C.A. Madramootoo ◽  
G.R. Mehuys ◽  
...  

2016 ◽  
Vol 11 (2) ◽  
pp. 49-60
Author(s):  
David Lomeling ◽  
Juma L.L. Yieb ◽  
Modi A. Lodiong ◽  
Mandlena C. Kenyi ◽  
Moti S. Kenyi ◽  
...  

2012 ◽  
Vol 482-484 ◽  
pp. 372-375 ◽  
Author(s):  
Jing Cai Wang ◽  
Zi Qiang Xia ◽  
Ji Xing Wang ◽  
Zhi Hua Lu

An in situ field test with three indices of stability, sensitivity and accuracy on 12 soil moisture sensors was carried out in a sandy loam soil located in Lu’an at the subtropical monsoon climate region (China). The results showed that the majority of sensors were above 0.98 with a higher stability degree except for HT-DR-601(0.348) and DZN3 (0.661). Almost all sensors had a sensitive response to a certain amount of precipitation but Hydra Probe II was an exception. Trime-pico, SM300, ML2X, SWR6 and DH-FDR had a higher accuracy than 0.785, while DZN3 and HT-DR-601 were very lower. The mean differences of SM300, Trime-pico and Uni_SM were between -1% and 0, while HTSMS-02, DH-FDR, SWR6, ML2X, MP-4C and MP-323 were between -5% and -1%. DZN3 had the largest values of -17.8%. Finally, SM300, Trime-pico, ML2X, SWR6 and DH-FDR were got scores above 9 points while MP-323 and Uni_SM were above 8.4, showing an outstanding performance. The field performance study could provide some choices for the large-scale filed applications and the drought monitoring system.


Sign in / Sign up

Export Citation Format

Share Document