CORN RESPONSE AND SOIL NITROGEN TRANSFORMATIONS FOLLOWING VARIED APPLICATION OF POULTRY MANURE TREATED TO MINIMIZE ODOR

1975 ◽  
Vol 55 (1) ◽  
pp. 29-34 ◽  
Author(s):  
K. A. MACMILLAN ◽  
T. W. SCOTT ◽  
T. W. BATEMAN

The response of corn (Zea mays L.) to manure that had been treated to minimize odor was investigated in a greenhouse trial with two silt loam soils of pH 4.2 and 7.1. Pretreatment of manure resulted in sources initially high in organic N and NH4+, but low in NO3−. One pretreatment gave high initial NO2− concentrations. In soil at pH 4.2, NH4+ was the major N source utilized by corn grown to 36 days, and dry matter yields were superior to those from soil at pH 7.1 where soluble NO3− was the major source of N. At pH 7.1, NO2− remained in significant quantities and decreased dry matter yields at 6 wk. Soil inorganic N concentrations varied between soils and was attributed to soil pH differences. Rate of NO2− disappearance decreased with increase in soil pH, and NH4+ accumulation increased with decrease in soil pH, whereas NO3+ production was favored by neutral pH conditions. Some NO3− production was observed in pH 4.2 soil after 36 days' incubation

2000 ◽  
Vol 80 (4) ◽  
pp. 849-860 ◽  
Author(s):  
D. M. Dean ◽  
B. J. Zebarth ◽  
C. G. Kowalenko ◽  
J. W. Paul ◽  
K. Chipperfield

This study examined the effects of solid poultry layer manure addition on soil N processes and on dry matter and N accumulation in red raspberry (Rubus idaeus L.). In trials conducted in two years, approximately 50% of the 400 kg total N ha−1 applied as manure was recovered as soil inorganic N 1 mo after manure application when manure was incorporated within 4 h of application. Three trials were conducted in two commercial raspberry fields: one with no history of manure use and one other with a history of heavy annual applications of poultry manure. Treatments included 55 kg N ha−1 as NH4NO3, 100 or 200 kg total N ha−1 as manure, and a control that received no manure or fertilizer N. Soil inorganic N to 60 cm depth was measured throughout the growing season. Berry yield was estimated, and dry matter and N accumulation was determined in floricanes at first berry ripening and in primocanes at the end of the growing season. Few significant effects of N fertilization were measured for any crop yield, growth or N accumulation parameter. This was attributed to the large (>150 kg N ha−1) supply of N to the crop in the unamended soil, primarily from soil N mineralization. Dry matter accumulation in the fruiting clusters was strongly correlated to estimated berry yield, and may provide a simple means for assessing relative yield within experiments. Soil nitrate measured in August after berry harvest may serve as a "report card" to assess N management in the current growing season, to refine fertilizer N management for subsequent growing seasons, and as an index of the risk of nitrate leaching over the following fall and winter in south coastal British Columbia. Key words: Nitrogen mineralization, nitrate leaching, manure N availability, Rubus idaeus


1992 ◽  
Vol 4 (1) ◽  
pp. 41-50 ◽  
Author(s):  
V. R. Smith ◽  
Marianna Steenkamp

The vascular vegetation of a mire-grassland community on Marion Island (47°S, 38°E) takes up c. 158 mg N m−2 d−1 in summer. Bryophytes take up c. 36 mg N m−2 d−1 during their peak growth period. Since inputs of N through precipitation and biological fixation are negligible, mineralization of organic N must have supplied the bulk of this N. From changes in peat inorganic N levels and rates of uptake by the vegetation we estimate mean mineralization rates of 178 mg N m−2 d−1 in summer and 55 mg N m−2d−1 in winter. In situ incubation of peat give a maximum mineralization rate of 48 mg N m−2 d−1. At this rate the small (700 mg m−2) pool of available N in the upper 25 cm of peat would be depleted by the vascular vegetation in about seven days and bryophytes would deplete the available N pool in the top 25 mm in two days. Hence the rate of N mineralization measured by incubation is much too low to account for the fluctuations in concentrations of inorganic N in the peat and the amounts taken up by the vegetation. This may be due to losses through denitrification or to the fact that soil macroinvertebrates were excluded from the incubation.


2001 ◽  
Vol 136 (2) ◽  
pp. 231-240 ◽  
Author(s):  
D. R. CHADWICK ◽  
J. MARTINEZ ◽  
C. MAROL ◽  
F. BÉLINE

A laboratory experiment was designed to determine the fate of 15N-labelled slurry ammonium (15NH4-N) and compare soil inorganic-N distribution following surface applied or injected pig slurry. A system of cylindrical volatilization chambers equipped to allow continuous trapping of ammonia (NH3) was used. Undisturbed soil columns were placed in the chambers prior to the application of slurry. A nitrogen balance including soil, air and plant analysis was established for both treatments, 8 days after application. Average cumulative emissions of NH3 were 15% and 11% of the total ammoniacal-N added with the surface and injected treatments, respectively. After 8 days 55% of the 15NH4-N applied through slurry injection was recovered in the soil inorganic-N pool: 37% as 15NH4-N and 18% as 15NO3-N. These figures compare with only 25% 15NH4-N recovered with the surface applied slurry treatment: 7% as 15NH-N and 17% as 15NO3-N. Immobilization into soil organic-N accounted for 8% of the 15NH4-N applied for the injected treatment and 6% of the surface applied slurry-15N. 15N uptake by the grass was 2% and 7% for the injected and surface applied treatments, respectively. The percentage of added 15N accounted for was 76% for the injected treatment and 53% for the surface applied slurry treatment.


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


2015 ◽  
Vol 154 (4) ◽  
pp. 632-646 ◽  
Author(s):  
L. H. HUANG ◽  
Z. W. LIANG ◽  
D. L. SUAREZ ◽  
Z.C. WANG ◽  
M. M. WANG ◽  
...  

SUMMARYSaline-sodic soils are widely distributed in the western Songnen Plain of Northeast China and planting rice has been found to be an effective and feasible approach for improving saline-sodic soil and increasing food production. Assessment of the effectiveness and sustainability of this method requires monitoring of the changes in soil salinity and nutrient content. The objective of the current study was to investigate the changes of soil salinity and nitrogen (N) contents over 1, 3, 6 and 9 years of cultivation, four application rates of N (N0: no N, N1: 100 kg N/ha, N2: 200 kg N/ha and N3: 300 kg N/ha) and two irrigation water types: ground water irrigation (GWI) and river water irrigation (RWI). Salinity and N contents of soil and water samples were analysed before planting and after harvest throughout the experiments. Soil pH and electrical conductivity (EC), especially in the surface layer of 0–40 cm depth, decreased with years of cultivation with both GWI and RWI, while soil inorganic N and total N contents increased. Moreover, with increasing N application rates, soil inorganic N and total N contents increased significantly in the 0–20 cm soil layer. Increasing N application had little effect on soil pH and EC. Reclaiming and planting rice promoted desalination of the surface and formation of a fertile tillage layer in saline-sodic paddy fields. In terms of irrigation and drainage in saline-sodic paddy fields, both soil salinity and N contents increased. Soil total salinity increased annually by 34 and 12·8 kg/ha, and inorganic N contents increased annually by 9 and 13·5 kg/ha with GWI and RWI, respectively. Therefore, comprehensive agricultural practices should be adopted for improving and cropping rice in saline-sodic paddy fields.


1987 ◽  
Vol 44 (4) ◽  
pp. 736-742 ◽  
Author(s):  
John D. Wehr ◽  
Lewis M. Brown ◽  
Kathryn O'Grady

A field and laboratory culture study was carried out on the nitrogen metabolism of isolates of the freshwater phytoplankter Chrysochromulina breviturrita Nich. (Prymnesiophyceae). These were isolated from two different softwater lakes, one believed to be influenced by acidic precipitation (Cinder Lake) and another which was experimentally acidified with H2SO4 (Lake 302-South). The alga was able to utilize only NH4+ as an inorganic N source. A range of irradiances and molybdenum concentrations failed to induce NO3− utilization. Among 17 organic N compounds including amino acids, purines, and other amines, only urea plus Ni2+ as a cofactor would serve as the sole N source for this species. Nonetheless, growth rates in media supplied with urea were significantly less than with NH4+. Field data from Lake 302-S indicate that a predominance of NH4+ versus NO3− as the major inorganic N species may have favored the development of a Chrysochromulina-dominated community during August 1984. A detailed depth profile also indicated that a metalimnetic peak (> 20 × 106 cells/L) of this alga coincided with a distinct NH4+ depletion, which occurred at no other time during the year. Experiments with isolates of C. breviturrita and a Nannochloris sp. (Chlorophyceae) (~ 1 μm in diameter) from this community indicated that the former alga possessed a highly specialized N metabolism much like the Cinder Lake isolate. The Nannochloris sp. from the same environment grew on NO3− and NH4+ equally well. It is suggested that the specialized NH4+ utilization by C. breviturrita may itself influence the pH regime of poorly buffered waters through selective NH4+ uptake and H+ generation.


2011 ◽  
Vol 8 (6) ◽  
pp. 11311-11335 ◽  
Author(s):  
E. Gioseffi ◽  
A. de Neergaard ◽  
J. K. Schjoerring

Abstract. Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3–) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3– and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3– and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3– did not affect glycine uptake, while the presence of glycine down-regulated NO3– uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.


2004 ◽  
Vol 84 (3) ◽  
pp. 845-854 ◽  
Author(s):  
B. J. Zebarth ◽  
Y. Leclerc ◽  
G. Moreau

This study evaluated rate and timing of N fertilization effects on the N use efficiency characteristics of rain-fed Russet Burbank potato. Trials conducted in 1999–2001 included different rates of fertili zer N (0–160 kg N ha-1 in 1999 and 0–200 kg N ha-1 in 2000 and 2001) applied either at planting according to normal grower practice, or at hilling, the latest time that granular fertilizer can practically be applied. Whole-plant dry matter and N accumulation were determined at topkill. Soil inorganic N content was measured to 30-cm depth at planting and at tuber harvest. Soil N supply (plant N accumulation plus soil inorganic N content at harvest with no fertilizer N applied) varied from 77 to 146 kg N ha-1 depending on the year. Crop N supply (soil N supply plus fertilizer N applied) was a better predictor of plant N accumulation than fertilizer N rate, and was used to remove the confounding effect of variation in soil N supply when making among-year comparisons for N use efficiency characteristics. Nitrogen uptake efficiency (NUpE; plant N accumulation/crop N supply) decreased with increasing rates of N applied at hilling N rate in 1999, which was a dry year, but was not influenced by at-hilling N rate in 2000 and 2001, or by at-planting N rate in any year. Nitrogen use efficiency (NUE; dry matter accumulation/crop N supply) and N utilization efficiency (NUtE; dry matter accumulation/plant N accumulation) decreased curvilinearly with increasing crop N supply in each year. Similar relationships between NUE and crop N supply, and between NUtE and plant N accumulation, among the 3 yr of the study suggest that these relationships are largely independent of seasonal climatic variation, and are primarily genetically controlled. Timing of N fertilization had no effect on any N use efficiency parameter, with the exception of reduced NUpE associated with split N application in 1999. This suggests that under rain-fed potato production in Atlantic Canada, timing of N fertilization has no significant effect on N use efficiency of Russet Burbank potato in years of adequate soil moisture, but NUpE may be decreased by split application of N in dry years. Key words: Solanum tuberosum, soil inorganic N, apparent fertilizer N recovery


2012 ◽  
Vol 63 (10) ◽  
pp. 887 ◽  
Author(s):  
Hanh Kim Nguyen ◽  
Erik Kristensen ◽  
Lars Chresten Lund-Hansen

Effects of organic-waste loading from fish farming on benthic metabolism and nitrogen (N) cycling were studied in the tropical Nha Phu Estuary, Vietnam. The loading of fish excreta and feed waste enhanced benthic oxygen (O2) uptake two times and total carbon dioxide (TCO2) release three times, compared with the reference station. NH4+ was the major form of released N, comprising 94–100% of dissolved inorganic N (DIN) flux below and near fish cages. Only 3% and 1% of organic carbon (OC) and organic N (ON) deposited from the fish farm was degraded in the sediment, whereas the rest was dispersed to adjacent areas via tidal currents or buried into the sediment. Coupled nitrification–denitrification were almost 0 under fish cages but increased at distances greater than 10 m from fish cages. Consequently, biologically available N was not removed permanently near fish cages as the excess N deposited under cages were mineralised and released as DIN. The nutrient efflux could therefore potentially be a source for pelagic primary production in the vicinity of cages. However, the water currents and low water residence time may have distributed and diluted the nutrient effect of cages to the entire estuary and the adjacent ocean.


Sign in / Sign up

Export Citation Format

Share Document