Highly Specialized Nitrogen Metabolism in a Freshwater Phytoplankter, Chrysochromulina breviturrita

1987 ◽  
Vol 44 (4) ◽  
pp. 736-742 ◽  
Author(s):  
John D. Wehr ◽  
Lewis M. Brown ◽  
Kathryn O'Grady

A field and laboratory culture study was carried out on the nitrogen metabolism of isolates of the freshwater phytoplankter Chrysochromulina breviturrita Nich. (Prymnesiophyceae). These were isolated from two different softwater lakes, one believed to be influenced by acidic precipitation (Cinder Lake) and another which was experimentally acidified with H2SO4 (Lake 302-South). The alga was able to utilize only NH4+ as an inorganic N source. A range of irradiances and molybdenum concentrations failed to induce NO3− utilization. Among 17 organic N compounds including amino acids, purines, and other amines, only urea plus Ni2+ as a cofactor would serve as the sole N source for this species. Nonetheless, growth rates in media supplied with urea were significantly less than with NH4+. Field data from Lake 302-S indicate that a predominance of NH4+ versus NO3− as the major inorganic N species may have favored the development of a Chrysochromulina-dominated community during August 1984. A detailed depth profile also indicated that a metalimnetic peak (> 20 × 106 cells/L) of this alga coincided with a distinct NH4+ depletion, which occurred at no other time during the year. Experiments with isolates of C. breviturrita and a Nannochloris sp. (Chlorophyceae) (~ 1 μm in diameter) from this community indicated that the former alga possessed a highly specialized N metabolism much like the Cinder Lake isolate. The Nannochloris sp. from the same environment grew on NO3− and NH4+ equally well. It is suggested that the specialized NH4+ utilization by C. breviturrita may itself influence the pH regime of poorly buffered waters through selective NH4+ uptake and H+ generation.

ISRN Botany ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jie He ◽  
Ameerah Zain

This study investigates the relative importance of leaf carnivory on Nepenthes alata by studying the effect of different nitrogen (N) sources on its photosynthesis and N metabolism in the greenhouse. Plants were given either inorganic NO3-, organic N derived from meal worms, Tenebrio molitor, or both NO3- and organic N for a period of four weeks. Leaf lamina (defined as leaves) had significant higher photosynthetic pigments and light saturation for photosynthesis compared to that of modified leaves (defined as pitchers). Maximal light saturated photosynthetic rates (Pmax) were higher in leaves than in pitchers. Leaves also had a higher light utilization than that of pitchers. Both leaves and pitchers of plants that were supplied with both inorganic NO3- and organic prey N had a similar photosynthetic capacity and N metabolism compared to plants that were given only inorganic NO3-. However, adding organic prey N to the pitchers enhanced both photosynthetic capacity and N metabolism when plants were grown under NO3- deprivation condition. These findings suggest that organic prey N is essential for N. alata to achieve higher photosynthetic capacity and N metabolism only when plants are subjected to an environment where inorganic N is scarce.


1975 ◽  
Vol 55 (1) ◽  
pp. 29-34 ◽  
Author(s):  
K. A. MACMILLAN ◽  
T. W. SCOTT ◽  
T. W. BATEMAN

The response of corn (Zea mays L.) to manure that had been treated to minimize odor was investigated in a greenhouse trial with two silt loam soils of pH 4.2 and 7.1. Pretreatment of manure resulted in sources initially high in organic N and NH4+, but low in NO3−. One pretreatment gave high initial NO2− concentrations. In soil at pH 4.2, NH4+ was the major N source utilized by corn grown to 36 days, and dry matter yields were superior to those from soil at pH 7.1 where soluble NO3− was the major source of N. At pH 7.1, NO2− remained in significant quantities and decreased dry matter yields at 6 wk. Soil inorganic N concentrations varied between soils and was attributed to soil pH differences. Rate of NO2− disappearance decreased with increase in soil pH, and NH4+ accumulation increased with decrease in soil pH, whereas NO3+ production was favored by neutral pH conditions. Some NO3− production was observed in pH 4.2 soil after 36 days' incubation


2011 ◽  
Vol 8 (6) ◽  
pp. 11311-11335 ◽  
Author(s):  
E. Gioseffi ◽  
A. de Neergaard ◽  
J. K. Schjoerring

Abstract. Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3–) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3– and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3– and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3– did not affect glycine uptake, while the presence of glycine down-regulated NO3– uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.


2006 ◽  
Vol 18 (2) ◽  
pp. 333-339 ◽  
Author(s):  
André Luís Thomas ◽  
Ladaslav Sodek

The transport of organic N compounds to the shoot in the xylem sap of nodulated soybean plants was investigated in an attempt to better understand the changes in N metabolism under root hypoxia (first 5 days of flooding), with different sources of N in the medium. NO3- is beneficial for tolerance of plants to waterlogging, whereas other N sources such as NH4+ and NH4NO3, are not. Nevertheless, in the presence of NH4+ high levels of amino acids were transported in the xylem, consistent with its assimilation. Some increase in the transport of amino acids was also seen with NO3- nutrition during waterlogging, but not with N-free medium. Ureide transport in the xylem was severely reduced during waterlogging, consistent with impaired N2 fixation under these conditions. The relative proportions of some amino acids in the xylem showed dramatic changes during treatment. Alanine increased tremendously under root hypoxia, especially with NH4+ as N source, where it reached near 70 % of the total amino acids present. Aspartic acid, on the other hand, dropped to very low levels and was inversely related to alanine levels, consistent with this amino acid being the immediate source of N for alanine synthesis. Glutamine levels also fell to a larger or lesser extent, depending on the N source present. The changes in asparagine, one of the prominent amino acids of the xylem sap, were most outstanding in the treatment with NO3-, where they showed a large increase, characteristic of plants switching from dependence on N2 fixation to NO3- assimilation. The data indicate that the lesser effectiveness of NH4+ during waterlogging, in contrast to NO3-, involves restricted amino acids metabolism, and may result from energy metabolism being directed towards NH4+ detoxification.


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


2019 ◽  
Vol 34 ◽  
pp. 41-66 ◽  
Author(s):  
Raffaella Balestrini ◽  
Carlo Andrea Delconte ◽  
Andrea Buffagni ◽  
Alessio Fumagalli ◽  
Michele Freppaz ◽  
...  

A number of studies have reported decreasing trends of acidifying and N deposition inputs to forest areas throughout Europe and the USA in recent decades. There is a need to assess the responses of the ecosystem to declining atmospheric pollution by monitoring the variations of chemical species in the various compartments of the forest ecosystem on a long temporal scale. In this study, we report on patterns and trends in throughfall deposition concentrations of inorganic N, dissolved organic N (DON) and C (DOC) over a 20-year (1995–2015) period in the LTER site -Val Masino (1190 m a.s.l.), a spruce forest, in the Central Italian Alps. The same chemical species were studied in the litter floor leachates and mineral soil solution, at three different depths (15, 40 and 70 cm), over a 10-year period (2005–2015). Inorganic N concentration was drastically reduced as throughfall and litter floor leachates percolated through the topsoil, where the measured mean values (2 µeq L-1) were much lower than the critical limits established for coniferous stands (14 µeq L-1). The seasonal temperature dependence of throughfall DOC and DON concentration suggests that the microbial community living on the needles was the main source of dissolved organic matter. Most of DOC and DON infiltrating from the litter floor were retained in the mineral soil. The rainfall amount was the only climatic factor exerting a control on DOC and N compounds in throughfall and forest floor leachates over a decadal period. Concentration of SO4 and NO3 declined by 50% and 26% respectively in throughfall deposition. Trends of NO3 and SO4 in forest floor leachates and mineral soil solution mirrored declining depositions. No trends in both DON and DOC concentration and in DOC/DON ratio in soil solutions were observed. These outcomes suggest that the declining NO3 and SO4 atmospheric inputs did not influence the dynamic of DON and DOC in the Val Masino forest. The results of this study are particularly relevant, as they are based on a comprehensive survey of all the main compartments of the forest ecosystem. Moreover, this kind of long-term research has rarely been carried out in the Alpine region.


2008 ◽  
Vol 20 (4) ◽  
pp. 295-303 ◽  
Author(s):  
Mário L. Garbin ◽  
Lúcia R. Dillenburg

The southern Brazilian highland plateau is a mosaic of two contrasting plant communities, Araucaria forests and grasslands, which differ in the relative abundances and spatial patterns of soil nitrate and ammonium. However, we still do not know the inorganic N preferences of one key species in this mosaic, Araucaria angustifolia, the dominant tree species in the Araucaria forests and an important tree species invading the adjacent grasslands. Growth responses measured in a greenhouse study demonstrated that the species prefers NH4+ over NO3- as an inorganic N source. When provided alone, NO3- induced N deficiency symptoms: increases in root: shoot ratio, root branching and leaf mass per area, thickening of the shoot apexes and decreased mass-based chlorophyll and N concentrations of the young leaves. Nitrate-based nutrition also affected the whole plant N and carbon (C) distribution: young leaves accumulated less N and showed a larger C:N ratio than mature leaves. The nitrate reductase activity (NRA) followed the pattern of root: shoot partitioning expected for temperate climate conifers (activity concentrated in roots). However, the presence of NRA even under sole NH4+ nutrition indicates that plants may show constitutive levels of the enzyme, or that low levels of NO3- (possibly formed by contamination of the growth media) can induce leaf NRA. We suggest that A. angustifolia has ammonium as a preferential inorganic N source, and that this preference may favor a more successful establishment in grassland than in forest areas.


Sign in / Sign up

Export Citation Format

Share Document