POTASSIUM STATUS OF A DARK BROWN CHERNOZEM SOIL AFTER SIXTY-SIX YEARS OF CROPPING UNDER IRRIGATION

1981 ◽  
Vol 61 (2) ◽  
pp. 409-415 ◽  
Author(s):  
S. DUBETZ ◽  
M. J. DUDAS

An irrigated rotation has supported high crop yields for 66 yr without the benefit of K fertilizer because of the relatively high total K status (14 392 ppm in the 0- to 15-cm layer and 11 183 ppm in the 15-to 30-cm layer) of the soil. This K status, under native conditions, was due to the nature of the parent material, biocycling and minimal leaching. After two-thirds of a century of intensive cropping, the exchangeable K was reduced by 28% in the 0- to 15-cm layer. Extractable K (NaTPB method) decreased progressively from 2023 ppm in the 0- to 15-cm layer to 1368 ppm in the 45- to 60-cm layer in the native sod soil but there was no appreciable change in levels of NaTPB-K in the cropped soil. Apparently, some of the readily extractable K. from micaceous minerals or feldspars, or both, was converted to exchangeable K as the latter pool was depleted through continued cropping. Critical levels of exchangeable and extractable K have not yet been reached.

2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4083
Author(s):  
Fabio Steiner ◽  
Maria Do Carmo Lana ◽  
Tiago Zoz ◽  
Jucenei Fernando Frandoloso

The changes in soil potassium pools under intense cropping and fertilized with potash fertilizer are still little known to the soils of Paraná State. The effects of potassium fertilization and successive cropping on changes in K pools in different soils of Paraná, Brazil, were investigated in this study. Twelve soil samples, collected from the upper layer 0–0.20 m, were fertilized or not with K and subjected to six successive cropping (i.e., soybean, pearl millet, wheat, common beans, soybean and maize). All the crops were grown for 45 days, and at the end of the second, fourth and sixth cropping, the soil from each pot was sampled to determination of the total K, non-exchangeable K, exchangeable K and solution K. The result showed that the soil potassium pools varied widely. Total K concentration ranged from 547 to 15,563 mg kg–1 (4,714 mg kg–1, on average). On the average, structural K, non-exchangeable K, exchangeable K and solution K of the soils constituted 84.0, 11.3, 4.6 and 0.1% of the total K, respectively. Soils differ in the ability to supply potassium to the plants in the short to medium term, due to the wide range of parent material and the degree of soil weathering. When the soils were not fertilized with K, the successive cropping of plants resulted in a continuous process of depletion of non-exchangeable K and exchangeable K pools; however, this depletion was less pronounced in soils with higher potential buffer capacity of K. The concentrations of K non-exchangeable and exchangeable K were increased with the addition of potassium fertilizers, indicating the occurrence of K fixation in soil. After the second cropping, the soil exchangeable K levels remained constant with values of 141 and 36 mg kg–1, respectively, with and without the addition of K fertilizer, reflecting in establishing of a new dynamic equilibrium of K in the soil.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4083 ◽  
Author(s):  
Fabio Steiner ◽  
Maria do Carmo Lana ◽  
Tiago Zoz ◽  
Jucenei Fernando Frandoloso

The changes in soil potassium pools under intense cropping and fertilized with potash fertilizer are still little known to the soils of Paraná State. The effects of potassium fertilization and successive cropping on changes in K pools in different soils of Paraná, Brazil, were investigated in this study. Twelve soil samples, collected from the upper layer 0–0.20 m, were fertilized or not with K and subjected to six successive cropping (i.e., soybean, pearl millet, wheat, common beans, soybean and maize). All the crops were grown for 45 days, and at the end of the second, fourth and sixth cropping, the soil from each pot was sampled to determination of the total K, non-exchangeable K, exchangeable K and solution K. The result showed that the soil potassium pools varied widely. Total K concentration ranged from 547 to 15,563 mg kg–1 (4,714 mg kg–1, on average). On the average, structural K, non-exchangeable K, exchangeable K and solution K of the soils constituted 84.0, 11.3, 4.6 and 0.1% of the total K, respectively. Soils differ in the ability to supply potassium to the plants in the short to medium term, due to the wide range of parent material and the degree of soil weathering. When the soils were not fertilized with K, the successive cropping of plants resulted in a continuous process of depletion of non-exchangeable K and exchangeable K pools; however, this depletion was less pronounced in soils with higher potential buffer capacity of K. The concentrations of K non-exchangeable and exchangeable K were increased with the addition of potassium fertilizers, indicating the occurrence of K fixation in soil. After the second cropping, the soil exchangeable K levels remained constant with values of 141 and 36 mg kg–1, respectively, with and without the addition of K fertilizer, reflecting in establishing of a new dynamic equilibrium of K in the soil.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiyi Zhang ◽  
Dongbi Liu ◽  
Maoqian Wu ◽  
Ying Xia ◽  
Fulin Zhang ◽  
...  

AbstractThe aims of the present study were to provide scientific bases for rational use of crop straw to substitute chemical potassium (K) input. The effects of potassium fertilization and straw incorporation on soil K balance and K supplying in a long-term (14 years) field experiment. Five treatments were examined: (1) no fertilization (CK); (2) mineral fertilizing (NPK); (3) straw 6000 kg h m−2 (S); (4) NPK with straw 3000 kg h m−2 (NPK1/2S); and (5) NPK with straw 6000 kg h m−2 (NPKS). K composition, K balance and quantity-intensity (Q/I) relationship were studied. Under no fertilization or low straw returned conditions, soil K was unbalanced and deficienct seriously. Straw return at 6000 kg h m−2 per season with fertilization improved the soil potassium supply and K balance. Long-term K surplus (4 or 5 years), compared with NPK, the NPKS significantly increased non-special K adsorption (Knsa) and non-exchangeable K (Kne) by 5.7–11.2 mg kg−1 and 65.7–128.1 mg kg−1, respectively. Q/I relationship showed cropping without straw K or without fertilizer K resulted in lower quantity (nonspecifically and specifically held K i.e. – ∆K0 and Kx) and intensity (equilibrium activity ratio i.e. CR0K) of K in tested soils. K-fertilization with straw maintain higher exchangeable K (EK0) and a higher difference between EK0 and minimum exchangeable K(EKmin), and would help to prevent depletion in non-exchangeable pool of soil K under intensive cropping. Additionally, The straw return mainly decreased potential buffering capacity for exchangeable pool (PBCKn), 43.92–48.22% of added K in soil might be converted to exchangeable pool while it was 25.67–29.19% be converted to non-exchangeable pool. The contribution of exchangeable K towards plant K uptake would be higher in the soil with straw than the soil without straw and the non-exchangeable K would be the long-term fixed K as a supplement to the potassium pool. K fertilizer with 6000 kg h m−2 straw return in each crop season increased soil available K and slowly available K. The findings underlined importance of the straw return and contribution for sustain K supplying ability of soils.


2019 ◽  
pp. 1552-1560
Author(s):  
Igor Tenório Marinho da Rocha ◽  
Fernando José Freire ◽  
Emídio Cantídio Almeida de Oliveira ◽  
Edivan Rodrigues de Souza ◽  
Maria Betânia Galvão dos Santos Freire ◽  
...  

The K is important for sugar concentration in sugarcane, but the salt effect on K fertilizer may reduce the productivity. The objective of this study was to evaluate productivity of sugarcane, to establish soil and plant K critical levels, and to determine a saline limit of the soil with maximum agronomic efficiency. The sugarcane variety RB992506 was cultivated in the field in Oxisol (Kandic) dystrophic with very sandy and low K content, mainly in subsurface. Six doses of K2O were used: 0; 25; 50; 100; 200; 250 kg ha-1. We evaluated soil and leaf K content, electrical conductivity of the saturated soil paste, productivity and technological quality of the sugarcane. The application of K promoted increase in soil and leaf K levels, increasing also both productivity and the sugar concentration. The dose of maximum agronomic efficiency was 150 kg ha-1 of K2O and production of 116 Mg ha-1. High doses of K (> 200 kg ha-1 of K2O) decreased the productivity due to elevated soil salinity by the application of K fertilizer. The critical levels of K were 0.18 cmolc dm-3 in the soil and 9.53 g kg-1 in the plant and were associated with low doses of K (< 25 kg ha-1 of K2O). The salinity limits that reduced productivity were 1.38 dS m-1 in the surface layer and 1.19 dS m-1 in the subsurface, suggesting that these critical levels and limits can be used to evaluate the fertility of sandy soils cultivated with sugarcane in tropical regions.


2001 ◽  
Vol 137 (2) ◽  
pp. 195-203 ◽  
Author(s):  
T. R. RUPA ◽  
S. SRIVASTAVA ◽  
A. SWARUP ◽  
D. SINGH

The effect of 27 years of continuous cropping, fertilization and manuring on potassium (K) supplying capacity of a Typic Ustochrept soil profile from Delhi, India under a maize–wheat–cowpea (fodder) cropping system was investigated by employing the quantity/intensity (Q/I) approach. The predominant mineral suite of the <2 μm clay fraction was illite. The values of equilibrium activity ratio of K in solution in equilibrium with the soil (ARKE), labile pools of K (KL), immediately available K (ΔK0), K available with difficulty (KX) and water soluble+exchangeable K (1 M NH4OAc K) in different soil layers (0 to 105 cm) under different treatments were in the following order: 100% nitrogen, phosphorus and potassium (NPK)+farmyard manure (FYM) > 100% NPK > control (no fertilizer) > 100% N >100% NP. The ARKE value, a measure of availability or intensity of labile K in soil decreased with profile depth due to greater K fixation by specific sites in the lower layers. The quantity of specifically sorbed K (KX) and the potential buffering capacity of soil (PBCK) showed a increasing trend with soil depth. In soil without K fertilizer treatments (control, 100% N and 100% NP) about 100% of the total K uptake by crops was from non-exchangeable soil K reserve as compared to 49·5 and 32·2% when annually 84 kg K/ha and 84 kg K/ha+FYM at the rate of 15 t/ha were applied. The results showed the greatest depletion of non-exchangeable K reserves in the plots which did not receive K fertilization. To ensure sustained crop production under intensive cropping, application of recommended dose of NPK plus FYM is required.


1960 ◽  
Vol 54 (2) ◽  
pp. 222-230 ◽  
Author(s):  
H. D. Patterson

An experiment on the use of wheat straw (ploughed in or composted at the rate of 53⅓ cwt./acre every second year) and NPK fertilizers in the maintenance of fertility was carried out at Rothamsted between 1933 and 1958. The effects of these treatments on the yields of the crops of the rotation used in the experiment—barley, sugar beet, potatoes—are discussed in the present paper.The treatments appear to have had no effect on crop yields through improvements to the soil caused by better structure or increased organic matter content. All the effects obtained can be attributed to changes in the supplies of available nutrients. The most important of these changes appear to have been: (1) nitrogen deficiencies due to the immobilization of soil nitrogen or nitrogen fertilizer by the straw: there is some evidence that this added to the store of slowly available nitrogen; (2) additions to potassium supplies from potassium in the straw. Factor (1) affected all three crops. Factor (2) affected potatoes, the only crop of the three to give good responses to potassium.It was found that when the straw was ploughed in directly about 0·08 ewt. N fertilizer applied to the crops for each ton of straw was sufficient to overcome losses in yield due to nitrogen deficiencies. The straw improved the yields of potatoes in the first and second years after application. Provided that allowance was made for losses of available nitrogen the yields of potatoes from ploughed-in straw were about the same as the yields obtained by adding K fertilizer to the crop, equal in amount to the potassium in the straw. When part of the fertilizers was ploughed in with the straw instead of being given directly to the crop the yields of potatoes were reduced.Compost made with NT fertilizers and straw and ploughed in with K fertilizer gave much poorer yields than were obtained by ploughing the straw in directly and applying the fertilizers to the crops. Losses of available nitrogen were severe, all the N fertilizer used in making the compost (0·15 cwt. N for each ton of straw) being either lost through drainage or immobilized by the straw. In addition, more than one half of the potassium in the straw was lost in composting.There was no evidence that any of the nitrogen immobilized in the decomposition of the straw became available in the first or second years after application. Residues from repeated applications of straw every second year over 18 years increased the yields of potatoes and sugar beet in the last 6 years of the experiment. The increases may have been due to the release of previously immobilized nitrogen.


1975 ◽  
Vol 84 (3) ◽  
pp. 513-524 ◽  
Author(s):  
T. M. Addiscott ◽  
A. E. Johnston

SUMMARYSoils from long-term experiments at Rothamsted and Woburn were cropped for very long periods (up to 5½ years) with ryegrass in pots. Measurements of the potassium taken up by the ryegrass that was not exchangeable to ammonium acetate and the kinetics of its release both suggested two categories of non-exchangeable K. Of these, the first to be released was closely related to the initial exchangeable K, whilst the second, though partly related to the initial exchangeable K was also influenced by the clay percentage. Release of both categories may have been controlled by diffusion, because both showed good relationships between the quantity released and time. It is suggested that the first category may be K ‘trapped’ when K fertilizer added in the field decreased the interlamellar spaces of vermiculite layers in clay particles, whilst the second may simply be the ‘native’ K (described by others) present in clay and other minerals in the soil.Resowing the soils (without drying them) during the later stages of K. uptake suggested that the ability of the old ryegrass to absorb K was not a factor limiting K uptake even after long growth.When the ryegrass ceased to grow, the mean K potentials in the exhausted soils were close to the ‘uptake potential’ for ryegrass derived earlier by considering K uptakes from soils in relation to the quantity/potential relationships of the soils. Drying and rewetting the exhausted soils released K; the amount was influenced in one group of soils by the exchangeable K in the moist exhausted soil and in another group by the clay percentage.


Author(s):  
Fernando Abruña

Capacity of the nine most extensive upland Inceptisols of Puerto Rico to supply potassium (K) was determined through intensive cropping in pots with Pangola grass during 4 consecutive years. In addition, field experiments were conducted on two of these soils, Mucara and Pandura, for comparison. Seven of the lnceptisols tested formed under a udic moisture regime. They supplied an average of 279/kg of K/ha to Pangola grass during the first year, and then dropped to 110, 114, and 93 kg/ha for the second, third and fourth years, respectively. The average of 106 kg/ha for the last 3 years probably represents the long term capacity of this group to supply K to plants. The amount of K released by Mucara and Pandura soils (both udic lnceptisols) in the field experiments agreed fairly well with values obtained in the pot experiments. Two of the lnceptisols tested formed under a ustic moisture regime released and average of 507 kg of K/ha during the first year, and then 254, 233, and 140 kg/ha the last 3 years. The average K release per year for the last 3 years was 209 kg/ha. However, the long range K supplying capacity of these soils is probably lower than this value. The exchangeable K values obtained at the beginning of the pot experiment were significantly correlated with the amount of K extracted by Pangola grass during the first year of cropping in pots, whereas the HN03-soluble K values were correlated with the average release of K during the last 3 cropping years.


1961 ◽  
Vol 57 (3) ◽  
pp. 381-386 ◽  
Author(s):  
P. W. Arnold ◽  
B. M. Close

1. On cropping Agdell Experiment topsoils to exhaustion with perennial rye-grass in the glasshouse the total K uptakes were directly proportional to the initial exchangeable K contents of the soils.2. The ability of the Agdell topsoils to release non-exchangeable K under glasshouse conditions decreased in the order: PK-rotation with fallow < NPK rotation with fallow < PK-rotation with clover < NPK-rotation with clover < no-fertilizerrotation with fallow = no-fertilizer rotation with clover.3. Releases of non-exchangeable K were at least 2·5 times larger than the falls in the exchangeable K for all the Agdell soils.4. In a ‘take-down’ experiment in the glasshouse on a soil receiving K fertilizer each year in the Saxmundham Rotation I Experiment, loosely held non-exchangeable K was released at a near-linear rate. At least a part of the loosely held non-exchangeable K in the Agdell soils was also released at a near-linear rate.


1997 ◽  
Vol 26 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Charles L. A. Asadu ◽  
Anselm A. Enete

Cassava root yields in three villages in southeastern Nigeria with marked differences in population pressure were related to soil properties using various models. The soils of the low population village, being formed from a different parent material, were more fertile than those of the medium and high population villages and cassava root yields were significantly higher in this village. The specific soil properties which appeared to promote cassava yields included pH and contents of Mn, silt and sand. Absolute values of exchangeable Mg, Ca, acidity and effective cation exchange capacity, although not significantly correlated with root yield, were also most favourable in the low population village. Thus inherent differences in soil properties rather than population pressure may be the major factors contributing to variations in cassava root yields in these villages.


Sign in / Sign up

Export Citation Format

Share Document