Iron status of crops in Prince Edward Island and effect of soil pH on plant iron concentration

1991 ◽  
Vol 71 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Umesh C. Gupta

Field studies were conducted in Prince Edward Island (PEI) on the Fe nutrition of cereals and forages and to determine the relationship between plant Fe and soil pH. The Fe concentration in barley (Hordeum vulgare L.) and oats (Avena sativa L.) boot stage tissue (BST) and grain ranged from 35 to 65 and from 19 to 42 mg kg−1, respectively, in the control and from 38 to 57 and from 22 to 45 mg kg−1, respectively, in the soil applied Fe treatments. In the foliar applied Fe treatments, the cereal BST contained as much as 121 mg Fe kg−1 in the FeSO4.7H2O treatments and up to 86 mg kg−1 in the chelate-Fe treatment, but neither of these two sources increased Fe concentration in the grain. In the first cut of forages in the foliar treatments, the Fe was as high as 131 mg Fe kg−1, but no differences were generally found between the control and Fe treatments in the second cut. Over the soil pH ranges of 4.5–6.9, no consistency was found in the correlation coefficient (r) values between plant Fe and soil pH. In spite of the Fe concentrations as low as 19 mg kg−1 in cereal grain and 23 mg kg−1 in forages in the control treatments, no yield response to added Fe was found. However, the Fe concentrations as found in this study would be considered deficient for livestock and mineral supplements of Fe to the feeds may be desirable. Key words: Cereals, forages, soil pH, plant iron, acid soils

1989 ◽  
Vol 69 (3) ◽  
pp. 473-479 ◽  
Author(s):  
UMESH C. GUPTA

Field experiments were conducted in Prince Edward Island (P.E.I.) to determine the effects of Zn (zinc sulfate) applied to the soil; applied as a foliar spray; and the effects of chelated Zn applied as a foliar spray on Zn concentration of alfalfa (Medicago sativa L.), ryegrass (Lolium multiflorum Lam.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.). Plant tissue Zn levels as low as 12 mg kg−1 in forages, 14 mg kg−1 in cereal boot stage tissue and 19 mg kg−1 in cereal grain were not related to Zn deficiency. Tissue Zn levels as high as 123 mg kg−1 in barley boot stage tissue and 153 mg kg−1 in alfalfa did not result in yield reduction or any Zn toxicity symptoms. Cereal and forage yields were not affected by Zn treatments. In most cases, soil and foliar Zn applications were effective in increasing the Zn concentration in forages and cereals. Should a Zn deficiency be suspected (either from the crop or animal nutrition viewpoint) Zn could be applied to the soil at 20 kg ha−1 or as a foliar spray at 0.5 to 1.0 kg ha−1 to overcome the problem in this region (and in other areas with similar soil and climatic conditions). Key words: Plant Zn, soil and foliar applied Zn, Zn chelate and zinc sulfate, podzol soils


2002 ◽  
Vol 82 (4) ◽  
pp. 785-788 ◽  
Author(s):  
K. R. Sanderson ◽  
M. R. Carter

Both studies and information are lacking concerning Ca and S nutrition of rutabagas (Brassica napobrassica Mill). Five field studies were conducted to determine yield response of rutabagas to soil-applied gypsum (CaSO4·2H2O), lime (calcite) and elemental S on sandy loam to loamy sand Orthic Podzols in Prince Edward Island. Marketable yield of rutabagas was not affected by addition of Ca or S amendments. Gypsum increased the S content of rutabaga leaf tissue and reduced soil pH. In this study, a soil extractable Ca level of at least 318 µg g-1 soil appears adequate to support rutabaga growth. Key words: Rutabagas, calcium, gypsum, calcite, elemental sulphur


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


2010 ◽  
Vol 24 (2) ◽  
pp. 160-164 ◽  
Author(s):  
W. Carroll Johnson ◽  
Timothy L. Grey ◽  
David Kissel

Field studies were conducted in 2006 and 2007 to evaluate the tolerance of autumn-planted cabbage and turnip green to halosulfuron applied the previous spring to cantaloupe. Main plots were three levels of soil pH: maintained at a natural pH level, pH raised with Ca(OH)2, and pH lowered with Al2(SO4)3. Subplots were a factorial arrangement of two halosulfuron application methods and three halosulfuron rates. Halosulfuron application methods were PPI or POST after transplanting to the edges of mulch-covered seedbeds. Halosulfuron rates were 35 and 70 g ai/ha, along with a nontreated control. Cantaloupe were transplanted, maintained weed-free, and evaluated for yield response. After cantaloupe harvest, direct-seeded turnip green and transplanted cabbage were established in September of each year and evaluated for crop tolerance and yield. Data indicated nonsignificant main effects of soil pH and halosulfuron application method on cantaloupe yield. However, in 2007 cantaloupe yields were significantly reduced, by 16 and 20% for halosulfuron applied at 35 and 70 g/ha, respectively. For all turnip green and cabbage response parameters, interactions were nonsignificant between application method and rate, soil pH and rate, and soil pH and application method, along with the three-way interaction. After 6 mo, there was no evidence of stunting from halosulfuron carryover in 2006 to direct-seeded turnip green and in both years to transplanted cabbage. Visual estimates of stunting to direct-seeded turnip green ranged from 9 to 16% for halosulfuron at 35 and 70 g/ha, respectively, in 2007, but all stunting was transient and turnip green yield was not affected.


1990 ◽  
Vol 30 (5) ◽  
pp. 629 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
CR Kidd ◽  
BR Cullis

The effects of soil pH and seasonal conditions on the responses of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) to chlorsulfuron were investigated at 3 sites in southern New South Wales in 1986, 1987 and 1988. The sites varied in soil pH (4.3-6.2) and annual rainfall (360-560 mm). In addition to the variation in soil pH between sites, 2 surface pH levels were obtained at each site by the addition of lime. The effect of post-emergence applications of 7.5, 15.0, 22.5, 30.0 and 37.5 g a.i./ha chlorsulfuron on the yield of weed-free barley and wheat varied with season, site and the addition of lime. The yield reduction was greatest in 1986, and the extent of the reduction was always greater in barley than wheat. In 1986, a recommended rate of chlorsulfuron (15 g a.i./ha) significantly (P<0.05) reduced the grain yield of barley at all sites by up to 18% and of wheat by up to 13%. Therefore, the reduced tolerance of barley and wheat to chlorsulfuron in some seasons was not restricted to the acid soils. Significant lime x chlorsulfuron interactions occurred with barley in 3 of the 9 trials, but the interactions were not consistent. At Ariah Park in 1986, grain yield reductions were greatest in unamended soils, while at both Ariah Park and Goolgowi in 1987, grain yield reductions were greatest with the limed plots. There were no significant interactions for wheat. In pot trials the effect of chlorsulfuron on the shoot dry weight of barley varied with soil type. However, there was no direct relationship between soil pH and dry weight reduction. When the pH of an acid soil was amended by liming to give soils with pH of 4.1-7.3, there was a trend to more damage at pH values of 5-6. With 4 soils of different pH and texture, there was less damage in the barley grown in soils of pH 7.3 and 7.4 than in soils of pH 4.1 and 6.0. While these results suggest that soil pH affects the tolerance of barley to chlorsulfuron, it is likely that soil pH is of less importance than other edaphic or climatic factors.


1986 ◽  
Vol 66 (1) ◽  
pp. 59-65 ◽  
Author(s):  
UMESH C. GUPTA

Field experiments were conducted in Prince Edward Island to determine the effects of MnSO4 H2O applied as a foliar spray and to the soil and the effects of chelated Mn applied as a foliar spray and limestone applications on Mn concentration and yields of alfalfa (Medicago sativa, L.), timothy (Phleum pratense L.), wheat (Triticum aestivum L.) and oats (Avena sativa L.). The Mn concentration in forages and cereal grain was not affected by method of application. Soil-applied Mn at 5 and 10 kg ha−1 was generally ineffective in increasing tissue Mn concentration. The second cut of alfalfa and timothy contained more Mn than the first cut. Yields of forages and cereals were not affected by Mn applications. Manganese concentrations as low as 29–31 μg g−1 in forages and 22 μg g−1 in cereals were not related to Mn deficiency. In spite of some foliage burning at the 2 kg Mn ha−1 foliar application, no yield reductions were found on any of the crops investigated. Applications of limestone to raise soil pH to 6.6–6.9 decreased tissue Mn in forages and cereal grain. The sharpest decreases occurred in timothy and alfalfa but did not result in low enough tissue Mn to cause Mn deficiency. Key words: Tissue Mn, soil-applied Mn, foliar-applied Mn, soil pH


2016 ◽  
Vol 53 (3) ◽  
pp. 432-444 ◽  
Author(s):  
TEMESGEN DESALEGN ◽  
GETACHEW ALEMU ◽  
AYALEW ADELLA ◽  
TOLESSA DEBELE ◽  
JULIÁN GONZALO J.

SUMMARYLow soil pH and associated soil infertility problems are considered to be amongst the major challenges to barley production in the highlands of Ethiopia. In response to this, an experiment was conducted at low soil pH (< 5 H2O) site on the effects of different levels of lime and phosphorus (P) fertilizer on soil pH, exchangeable aluminium (Al3+), grain yield and yield components of barley during 2010 and 2011 cropping seasons. The experiment comprised factorial combinations of five lime rates (0, 0.55, 1.1, 1.65 and 2.2 t ha−1) and four P rates (0, 10, 20 and 30 kg ha−1) in a randomized complete block design in three replications. The amount of lime that was applied at each level was calculated on the basis of Al3+. Results of soil analysis after 2 years of liming showed that liming significantly (P < 0.05) increased soil pH, and markedly reduced exchangeable Al3+. Liming at the rate of 0.55, 1.1, 1.65 and 2.2 t ha−1 decreased Al3+ by 0.88, 1.11, 1.20 and 1.19 mill equivalents per 100 g of soil, and increased soil pH by 0.48, 0.71, 0.85 and 1.1 units, respectively. Amongst the liming treatments, liming at the rate of 1.65 and 2.2 t ha−1 gave significantly (P < 0.05) the highest grain yield and yield components of barley. However, grain yield obtained by applications of 1.65 and 2.2 t ha−1 lime was statistically comparable. By additions of 10, 20 and 30 kg P ha−1, grain yield of barley increased by about 29, 55 and 66% as compared to control (without P). During 2010, however, the combined applications 1.65 t ha−1 lime and 30 kg P ha−1 gave 133% more grain yields of barley relative to control (without P and lime). Therefore, sustainable barley production on acid soils in the central highlands of Ethiopia should entail combined applications of both lime and P fertilizer.


2000 ◽  
Vol 80 (1) ◽  
pp. 205-216 ◽  
Author(s):  
D. Spaner ◽  
D. B. McKenzie ◽  
A. G. Todd ◽  
A. Simms ◽  
M. MacPherson ◽  
...  

Livestock farmers in Newfoundland use most available land for forages. The local production of feed grains is negligible and expensive imported feed accounts for almost one half of farm operating expenses. Here, our objectives were to develop basic agronomic principles of mechanized spring grain production and to demonstrate grain production techniques to the Newfoundland farming community. Barley seeding date trials were conducted at five environments in eastern and western Newfoundland between 1996 and 1998. The relationship between soil pH and barley grain yield was explored through grid soil and yield sampling in two large fields in both 1997 and 1998. Between 1993 and 1998 over 20 livestock farmers throughout Newfoundland cooperated with the Newfoundland Grain Project, growing and comparing varieties of barley (Hordeum vulgare L.), spring wheat (Triticum aestivum L.) and oats (Avena sativa L.) on their farms. Late seeding of barley in the spring/summer resulted in linear grain yield reductions. A levelling off of yield response did not occur at greater cumulated growing degree days, possibly because optimum accumulation for maximum barley yield potential does not occur in Newfoundland. Resistant regression lines, describing the relationship between soil pH and grain yield were developed for two barley varieties, indicated that Sterling reached a yield plateau around a soil pH 6 in 1998, while Chapais reached a yield plateau at soil pH 5.4 in 1997. Barley is well adapted to Newfoundland growing conditions, normally providing a high-yielding, mature grain of good feeding quality. Farmers collaborating with the project were generally impressed with the potential of growing barley for grain and some are now regularly doing so. Key words: Seeding date; barley; wheat; oats; precision farming research


Sign in / Sign up

Export Citation Format

Share Document