mn deficiency
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayesha Ijaz ◽  
Muhammad Zahid Mumtaz ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Muhammad Saqib ◽  
...  

Manganese (Mn) is an essential micronutrient for plant growth that is involved in the structure of photosynthetic proteins and enzymes. Mn deficiency is widespread mainly in dry, calcareous, and sandy soil, which leads to a significant decrease in crop yield. Mn-reducing bacteria promote the solubilization of Mn minerals, thus increasing Mn availability in soil. The present study aimed to assess the Mn solubilizing ability and plant growth-promoting potential of Bacillus spp. strains for maize plants with insoluble Mn compounds. Several Mn-solubilizing bacterial (MSB) strains were isolated from the maize rhizosphere using nutrient agar media amended with 50 mM MnO2. These strains were screened based on qualitative and quantitative solubilization of Mn, phosphorus, potassium, and zinc and production of ammonia. The majority of MSB strains were positive for catalase, protease, amylase, and oxidase activity, while more than 60% of tested strains were positive for lipase activity, and the production of indole-3-acetic acid and siderophores. Forty-five percent of the tested strains also showed solubilization of potassium. All the MSB strains were evaluated for their ability to promote plant growth and Mn uptake in the presence of MnO2 under axenic sand culture conditions. The results revealed that inoculation with MSB strains under sand culture significantly improved the growth of maize seedlings except for strains ASH7, ASH10, and ASH12. Comparatively, strains ASH6, ASH11, ASH19, ASH20, and ASH22 demonstrated a better increase in plant growth, fresh and dry biomass, and Mn uptake in roots and shoots than the other strains tested. All of these strains were identified as Bacillus spp. through 16S rRNA partial gene sequencing. Maize inoculation with these selected identified MSB strains also resulted in an increase in maize growth and nutrient uptake in maize roots and shoots under soil culture conditions in the presence of native soil Mn. The current study highlights the importance of MSB strain inoculation which could be a potential bioinoculants to promote plant growth under Mn deficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamilla Silva Oliveira ◽  
Renato de Mello Prado ◽  
Mirela Vantini Checchio ◽  
Priscila Lupino Gratão

AbstractManganese (Mn) is highly demanded by Poaceae, and its deficiency induces physiological and biochemical responses in plants. Silicon (Si), which is beneficial to plants under various stress conditions, may also play an important role in plants without stress. However, the physiological and nutritional mechanisms of Si to improve Mn nutrition in sugarcane and energy cane, in addition to mitigating deficiency stress, are still unclear. The objective of this study is to evaluate whether the mechanisms of action of Si are related to the nutrition of Mn by modulating the antioxidant defense system of sugarcane plants and energy cane plants cultivated in nutrient solution, favoring the physiological and growth factors of plants cultivated under Mn deficiency or sufficiency. Two experiments were carried out with pre-sprouted seedlings of Saccharum officinarum L. and Saccharum spontaneum L. grown in the nutrient solution. Treatments were arranged in a 2 × 2 factorial design. Plants were grown under Mn sufficiency (20.5 µmol L−1) and the deficiency (0.1 µmol L−1) associated with the absence and presence of Si (2.0 mmol L−1). Mn deficiency caused oxidative stress by increasing lipid peroxidation and decreasing GPOX activity, contents of phenols, pigments, and photosynthetic efficiency, and led to the growth of both studied species. Si improved the response of both species to Mn supply. The attenuation of the effects of Mn deficiency by Si depends on species, with a higher benefit for Saccharum spontaneum. Its performance is involved in reducing the degradation of cells by reactive oxygen species (21%), increasing the contents of phenols (18%), carotenoids (64%), proteins, modulating SOD activity, and improving photosynthetic and growth responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Young Ah Seo ◽  
Eun-Kyung Choi ◽  
Luisa Aring ◽  
Molly Paschall ◽  
Shigeki Iwase

Manganese (Mn), primarily acquired through diet, is required for brain function and development. Epidemiological studies have found an association between both low and high levels of Mn and impaired neurodevelopment in children. Recent genetic studies have revealed that patients with congenital Mn deficiency display severe psychomotor disability and cerebral and cerebellar atrophy. Although the impact of Mn on gene expression is beginning to be appreciated, Mn-dependent gene expression remains to be explored in vertebrate animals. The goal of this study was to use a mouse model to define the impact of a low-Mn diet on brain metal levels and gene expression. We interrogated gene expression changes in the Mn-deficient mouse brain at the genome-wide scale by RNA-seq analysis of the cerebellum of mice fed low or normal Mn diets. A total of 137 genes were differentially expressed in Mn-deficient cerebellums compared with Mn-adequate cerebellums (Padj < 0.05). Mn-deficient mice displayed downregulation of key pathways involved with “focal adhesion,” “neuroactive ligand-receptor interaction,” and “cytokine-cytokine receptor interaction” and upregulation of “herpes simplex virus 1 infection,” “spliceosome,” and “FoxO signaling pathway.” Reactome pathway analysis identified upregulation of the splicing-related pathways and transcription-related pathways, as well as downregulation of “metabolism of carbohydrate,” and “extracellular matrix organization,” and “fatty acid metabolism” reactomes. The recurrent identifications of splicing-related pathways suggest that Mn deficiency leads to upregulation of splicing machineries and downregulation of diverse biological pathways.


2020 ◽  
pp. 1-5
Author(s):  
M. Carmen Ramos-Sánchez ◽  
Jesús Martín-Gil ◽  
Laura Buzón-Durán ◽  
Pablo Martín-Ramos

2020 ◽  
Vol 71 (19) ◽  
pp. 6116-6127 ◽  
Author(s):  
Lizhi Long ◽  
Pai R Pedas ◽  
Rebekka K Kristensen ◽  
Waltraud X Schulze ◽  
Søren Husted ◽  
...  

Abstract Manganese (Mn) plays an important role in the oxygen-evolving complex, where energy from light absorption is used for water splitting. Although changes in light intensity and Mn status can interfere with the functionality of the photosynthetic apparatus, the interaction between these two factors and the underlying mechanisms remain largely unknown. Here, maize seedlings were grown hydroponically and exposed to two different light intensities under Mn-sufficient or -deficient conditions. No visual Mn deficiency symptoms appeared even though the foliar Mn concentration in the Mn-deficient treatments was reduced to 2 µg g–1. However, the maximum quantum yield efficiency of PSII and the net photosynthetic rate declined significantly, indicating latent Mn deficiency. The reduction in photosynthetic performance by Mn depletion was further aggravated when plants were exposed to high light intensity. Integrated transcriptomic and proteomic analyses showed that a considerable number of genes encoding proteins in the photosynthetic apparatus were only suppressed by a combination of Mn deficiency and high light, thus indicating interactions between changes in Mn nutritional status and light intensity. We conclude that high light intensity aggravates latent Mn deficiency in maize by interfering with the abundance of PSII proteins.


2020 ◽  
Author(s):  
Erika J. Mitchell ◽  
Seth H. Frisbie ◽  
Stéphane Roudeau ◽  
Asuncion Carmona ◽  
Richard Ortega

AbstractBackgroundAlthough manganese (Mn) is an essential nutrient, recent research has revealed that excess Mn in early childhood may have adverse effects on neurodevelopment.MethodsWe estimated daily total Mn intake due to breast milk at average body weights by reviewing reported concentrations of breast milk Mn and measurements of body weight and breast milk intake at 3 weeks, 4.25 months, 7 months, and 18 months. We compared these figures to the Mn content measured in 44 infant, follow-up, and toddler formulas purchased in the United States and France. We calculated Mn content of formula products made with ultra-trace elemental analysis grade water (0 µg Mn/L) and with water containing 250 µg Mn/L, a concentration which is relatively high but less than the World Health Organization Health-based value of 400 µg Mn/L or the United States Environmental Protection Agency Health Advisory of 350 µg Mn/L.ResultsEstimated mean daily Mn intake from breast milk ranged from 1.2 µg Mn/kg/day (3 weeks) to 0.16 µg Mn/kg/day (18 months), with the highest intakes at the youngest age stage we considered, 3 weeks. Estimated daily Mn intake from formula products reconstituted with 0 µg Mn/L water ranged from 130 µg Mn/kg/day (3 weeks) to 4.8 µg Mn/kg/day (18 months) with the highest intakes at 3 weeks. Formula products provided 28 to 520 times greater than the mean daily intake of Mn from breast milk for the 4 age stages that we considered. Estimated daily Mn intake from formula products reconstituted with water containing 250 µg Mn/L ranged from 12 µg Mn/kg/day to 170 µg Mn/kg/day, which exceeds the United States Environmental Protection Agency Reference Dose of 140 µg Mn/kg/day for adults.ConclusionsMn deficiency is highly unlikely with exclusive breast milk or infant formula feeding, but established tolerable daily intake levels for Mn may be surpassed by some of these products when following labeled instructions.HighlightsMn deficiency is unlikely with exclusive breast milk or infant formula feeding.Breast milk Mn mean intake is 1.2 µg/kg/day (3 weeks)-0.16 µg/kg/day (18 months).Formula Mn intake range is 130 µg/kg/day (3 weeks)-4.8 µg/kg/day (18 months).Formula products reconstituted with 250 µg Mn/L water may exceed 140 µg Mn/kg/day.Formula products may surpass regulatory tolerable daily intake levels for Mn.


2020 ◽  
Vol 126 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Jonathan E Cope ◽  
Joanne Russell ◽  
Gareth J Norton ◽  
Timothy S George ◽  
Adrian C Newton

Abstract Background and Aims Manganese (Mn) deficiency in barley is a global problem. It is difficult to detect in the early stages of symptom development and is commonly pre-emptively corrected by Mn foliar sprays that can be costly. Landraces adapted to marginal lands around the world represent a genetic resource for potential sustainability traits including mineral use efficiency. This research aims to confirm novel Mn use efficiency traits from the Scottish landrace Bere and use an association mapping approach to identify genetic loci associated with the trait. Methods A hydroponic system was developed to identify and characterize the Mn deficiency tolerance traits in a collection of landraces, including a large number of Scottish Bere barleys, a group of six-rowed heritage landraces grown in the highlands and islands of Scotland. Measuring chlorophyll fluorescence, the effect of Mn deficiency was identified in the early stages of development. Genotypic data, generated using the 50k Illumina iSelect genotyping array, were coupled with the Mn phenotypic data to create a genome-wide association study (GWAS) identifying candidate loci associated with Mn use efficiency. Key Results The Bere lines generally had good Mn use efficiency traits. Individual Bere lines showed large efficiencies, with some Bere lines recording almost double chlorophyll fluorescence readings in limited Mn conditions compared with the elite cultivar Scholar. The Mn-efficient Bere lines had increased accumulation of Mn in their shoot biomass compared with elite cultivars, which was highly correlated to the chlorophyll fluorescence. Several candidate genes were identified as being associated with Mn use efficiency in the GWAS. Conclusions Several genomic regions for Mn use efficiency traits originating from the Bere lines were identified. Further examination and validation of these regions should be undertaken to identify candidate genes for future breeding for marginal lands.


2019 ◽  
Vol 55 (04) ◽  
pp. 170-181
Author(s):  
Anand Kumar Kalle ◽  
Shampa Ghosh ◽  
Anju Elizabeth Thomas ◽  
Raghunath Manchala

AbstractObesity and noncommunicable diseases (NCDs) like diabetes are epidemic in India. Developmental origins of health and disease hypothesis, based on epidemiological evidence, associates maternal undernutrition and low birth weight (LBW) of the offspring with increased obesity and diabetes in their later life. Considering widespread maternal micronutrient (MN) deficiencies, LBW, and NCDs in India, we tested the hypothesis, “maternal MN deficiency per se programs the offspring for obesity and increases risk for NCDs in their later life” in rodent models. We showed in Wistar rat offspring that maternal MN (single or combined) deficiency per se: (1) increased body fat (visceral fat) and altered lipid metabolism, (2) decreased lean body and fat free mass, and (3) altered muscle function and altered glucose tolerance/metabolism and insulin sensitivity. Rehabilitation prevented vitamin but not mineral restriction-induced changes in offspring, which showed partial mitigation. Increased oxidative/steroid stress, decreased antioxidant status, and inflammatory state were the associated common mechanisms in the offspring. Our attempts to assess the role of epigenetics showed that folate and/or vitamin B12 deficiencies altered mother’s body composition besides that of the offspring. Additionally, in C57BL/6 mice, B12 deficiency-induced anxiety was observed in mothers and offspring. That expressions of histone modifying enzymes in mice brain and promoter methylation of adiponectin, leptin, and 11βHSD1 genes in rat offspring were altered in MN (B12 and Mg) deficiency suggested that altered epigenetics most likely plays a role in maternal MN deficiency-induced changes in body fat/lipid metabolism and anxiety-like behavior in mothers and offspring.


EDIS ◽  
2019 ◽  
Vol 2006 (1) ◽  
Author(s):  
Timothy K. Broschat

Physiological disorders are those caused by various environmental factors, rather than biological agents. Nutrient deficiencies are typically included within this category, but are discussed in other publications See: N deficiency, K deficiency, Mg deficiency, Mn deficiency, Fe deficiency, B deficiency. This document is ENH1011, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date September 2005. ENH1011/EP263: Physiological Disorders of Landscape Palms (ufl.edu)


Sign in / Sign up

Export Citation Format

Share Document