scholarly journals Cation exchange capacities of upland soils in eastern Canada

1994 ◽  
Vol 74 (4) ◽  
pp. 393-408 ◽  
Author(s):  
W. L. Meyer ◽  
P. A. Arp ◽  
M. Marsh

Relationships between cation exchange capacity (CEC), clay and organic carbon contents and soil pH were analyzed by way of multiple regressions for upland soils in eastern Canada (mostly Ontario, with additional data for New Brunswick). This was done by vegetation type in an attempt to explain some of the otherwise unexplained CEC variations. Data were taken from about 2000 soil horizons (organic L, F, and H horizons as well as A, B, and C mineral soil horizons) under broadleaves (mostly maples, beech, birch or aspen as dominant species), conifers (mostly fir, spruces and/or pines), and grass vegetation. For the organic forest floor horizons (or L, F, and H horizons), both organic carbon content (%) and pH were highly significant for predicting CEC, i.e.,CEC (L, F, and H of broadleaves) = −38 + 0.71 × org. C (%) + 10.3 × pH (R2 = 0.69), andCEC (L, F and H of conifers) = −31 + 0.34 × org. C (%) + 12.1 × pH (R2 = 0.58).For the mineral soil, clay and organic carbon contents (%) and pH were highly significant for predicting CEC. Soils with forest vegetation were found to have lower contributions of organic matter to CEC than grassland soils, i.e.,CEC (forest soils) = −7.0 + 0.29 × clay (%) + 0.82 × org. C (%) + 1.4 × pH (R2 = 0.72),CEC (wooded grasslands) = −6.0 + 0.31 × clay (%) + 1.31 × org. C (%) + 1.0 pH (R2 = 0.74), andCEC (grasslands) = −8.3 + 0.24 × clay (%) + 2.14 × org. C (%) + 1.3 × pH (R2 = 0.79).Relationships that were developed from Ontario data for specific vegetational types (maple sites, strongly podzolized conifer sites, grasslands/croplands) were tested by comparing CEC predictions with reported values for similar sites in New Brunswick and Quebec. The predictions were consistent with the general trends for maple sites and grasslands/croplands, but CEC values were strongly overpredicted for Podzolic subsoils on conifer sites.Literature information of the CEC dependency on in situ pH is sparse. Existing information that is based on buffering grassland/cropland soil samples from pH 2.5 to 8 appears to mimic this dependency quite well. Key words: Cation exchange capacity, clay, organic carbon, soil pH, forests, grasslands

Author(s):  
Nsengimana Venuste

Different tree speciesare blamed to have negative effects on soil ecosystems by changing soil physicochemical properties, and hence soil quality. However, few researches to verify this statement were done in Rwanda. This study provides prior information on the effects of planted forest tree species on soil physicochemical properties. It was conducted in the Arboretum of Ruhande, in southern Rwanda. Soil cores were collected in plots of exotic, native and agroforestry tree species. Collected soils were analysed for soil pH, total nitrogen, organic carbon, available phosphorus,  aggregate stability, bulk density, soil humidity, cation exchange capacity, and soil texture. Soils sampled under exotic tree species were acidic, richin soil organic carbon, and in soil available phosphorus. Native and agroforestry tree species offer better conditions in soil pH, soil water content, cation exchange capacity, clay and silt. Less variations in soil total nitrogen and soil bulk density were found in soils sampled under all studied forest types. Research concluded that studiedtree species have different effects on soil physicochemical parameters. It recommended further studies to generalize these findings. Key words: soil, exotic, native, agroforestry, soil properties


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


2021 ◽  
Vol 23 (3) ◽  
pp. 368-374
Author(s):  
A. BASUMATARY ◽  

Two hundred fifty geo-referenced surfaces (0-15 cm) soil samples were collected and analysed for macronutrients and micronutrients to study fertility status in soils of Dima Hasao district of Assam and their relationship with some important soil properties. Soils of the district were found to be extremely acidic to slightly acidic in reaction with a low to high organic carbon content and low in cation exchange capacity. The soil of the district indicated that the available nitrogen, phosphorus and potassium status was observed to the tune of 14.0 %,7.2% and 67.2% under low and 86.0 %, 92.8 % and 32.8 %under medium categories, respectively. The overall percent deficient of exchangeable calcium, magnesium and available sulphur in soils was 25.6, 30.4 and 6.8 %, respectively. Based on critical limit, all soils were adequately supplied with DTPA-extractable Fe, Mn and Cu content. In respect of zinc and boron, soils exhibited 90.4 and 73 per cent under sufficient, while, 2.4 and 12 per cent were found deficient in DTPA -Zn and HWS-B, respectively. Soil pH and EC showed positive correlation with macro nutrients and negative correlation with micronutrients. The macro- and micronutrient showed significant positive relation with soil organic carbon and cation exchange capacity.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Martin Leue ◽  
Daniel Uteau ◽  
Stephan Peth ◽  
Steffen Beck‐Broichsitter ◽  
Horst H. Gerke

1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


1976 ◽  
Vol 56 (3) ◽  
pp. 213-221 ◽  
Author(s):  
Y. A. MARTEL ◽  
M. R. LAVERDIERE

The objectives of this work were (1) to determine the relation existing between the organic matter contents of Ap horizons and their respective soil Orders, (Gleysolic and Podzolic), texture, pH and geographic locations in the different thermal regions of Quebec and (2) to determine the role of organic matter and soil texture on the cation exchange properties of the same Ap horizons coming from soils used for forage crops in Quebec. The cation-exchange capacity (CEC), the exchangeable bases and acidity were determined by using 1 N NH4OAC – pH 7. The results showed a variation in the carbon content ranging from 1.4 to 6.9%. The heat units accumulated in each region and the clay contents were correlated with the percentage of carbon and nitrogen. Soil pH and soil Orders (Gleysolic vs. Podzolic) did not seem to affect the organic matter content. The cation-exchange capacity (CEC) ranged from 10.6 to 42.6 meq/100 g soil; 40% of this was attributable to carbon and 32% to clay contents. Simple and multiple regression equations showed that carbon was correlated with the exchangeable acidity, while clay was related to the exchangeable bases. The CEC of organic matter and clay were respectively 161 ± 45 meq/100 g organic matter and 29 ± 6 meq/100 g clay. These values, lower than for Western Canada, reflected the nature of the organic matter that is less developed in Eastern Canada than in the Chernozemic soils; they also showed the effect of the predominant illite mineral found in the clay fractions compared to montmorillonite in Western Canada.


Sign in / Sign up

Export Citation Format

Share Document