Sward age and weather effects on alfalfa yield at a semi-arid location in southwestern Saskatchewan

1997 ◽  
Vol 77 (4) ◽  
pp. 595-599 ◽  
Author(s):  
P. G. Jefferson ◽  
H. W. Cutforth

Alfalfa (Medicago sativa L.) yield in the first and second years after establishment is typically much greater than yield in subsequent years under dryland production systems in semiarid regions. Alfalfa is a deep-rooted perennial that uses soil water stored at soil depths below the reach of shallow-rooted cereals and grasses. Since alfalfa yield is positively related to evapotranspiration, this study was conducted to determine the relationship between historical alfalfa yield data and weather variables as affected by sward age. Rambler alfalfa yields collated by sward age during cultivar yield trials from 1951 to 1994 at Swift Current, Saskatchewan, were statistically related to monthly precipitation (April to August) and monthly pan evaporation (May to September) during the growing season, and to the fall and winter total precipitation (September to March). One-year-old swards yielded more than 3-, 4- or 5-yr-old swards. For 1- and 2-yr-old alfalfa swards, weather accounted for 50% and 47% of the yield variability, respectively. However, weather accounted for 85, 87 and 96%, respectively, for 3-, 4- and 5-yr-old swards. We hypothesize that soil water stored deep in the profile accounted for much of the remaining yield variability in one and two year old swards. Researchers must measure soil water use from soil depths to at least 3 m when assessing dryland alfalfa yields. Key words: Medicago sativa L., weather, modelling, forage yield

Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 169 ◽  
Author(s):  
Marisol Berti ◽  
Dulan Samarappuli

The recommended sowing rate of alfalfa (Medicago sativa L.) is about 10 kg pure live seed ha−1, but it is debated if increasing the sowing rate enhances forage yield and quality in the sowing year. This study was conducted to: (i) determine the optimal sowing rate to maximize forage yield; and (ii) determine the relationship between plant and stem density with forage yield and nutritive value. Experiments were conducted at three sites in North Dakota between 2013 and 2016. Six sowing rates [1, 5, 10, 15, 20, and 25 kg ha−1 pure live seed (PLS)] were evaluated. Results indicated that total forage yield in the sowing year was lower only with the lowest sowing rate. Maximum total forage yield in the sowing, first, second, and third production years was obtained with 73, 52, 37, and 36 plants m−2 and 575, 495, 435, and 427 stems m−2, respectively. In the sowing and first production year, both plant and stem density predicted forage yield similarly. In older stands, stem density predicted forage yield slightly better. Forage nutritive value was similar among sowing rates indicating an increase in sowing rate does not enhance forage nutritive value. In conclusion, increasing the sowing rate above the recommended rate (10 kg PLS ha−1) does not increase forage yield or quality.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 550
Author(s):  
Panagiotis Kanatas ◽  
Ioannis Gazoulis ◽  
Ilias Travlos

Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, and forage quality. In a randomized complete block design (four replications), two cultivars (“Ypati 84” and “Hyliki”) were the main plots, while three irrigation timings were the subplots (split-plot). The irrigation timings were IT-1, IT-2, and IT-3, denoting irrigation 1 week before harvest, 1 week after harvest, and 2 weeks after harvest, respectively. IT-1 reduced Solanum nigrum L. density by 54% and 79% as compared to IT-3 and IT-2, respectively. Chenopodium album L. density was the highest under IT-2. IT-3 resulted in 41% lower Amaranthus retroflexus L. density in comparison to IT-2, while the lowest values were observed under IT-1. Stand density and stems·plant−1 varied between years (p ≤ 0.05). Mass·stem−1 and alfalfa forage yield were affected by the irrigation timings (p ≤ 0.001). Total weed density and forage yield were negatively correlated in both the second (R2 = 87.013%) and the fourth (R2 = 82.691%) harvests. IT-1 and IT-3 increased forage yield, leaf per stem ratio, and crude protein as compared to IT-2. Further research is required to utilize the use of cultural practices for weed management in perennial forages under different soil and climatic conditions.


Author(s):  
Allan Foster ◽  
Bill Biligetu

Cicer milkvetch (Astragalus cicer L.) (CMV) is a non-bloating, perennial legume that has shown persistence under grazing. Limited information is available on its seedling establishment and subsequent forage yield and nutritive value in alfalfa (Medicago sativa L.) mixtures. Field plots were seeded in May 2013 at Melfort, SK, Canada to evaluate ‘Oxley II’ cicer milkvetch performance in ‘AC Grazeland’ alfalfa or alfalfa and ‘AC Success’ hybrid bromegrass (Bromus riparius × B. inermis) mixtures from 2014 to 2017. Two controlled environment tests were also conducted by treating seeds of CMV using alfalfa root aqueous extract. Seed germination and seedling height of CMV were significantly reduced in aqueous extract. In field, establishment of CMV in a mixture containing alfalfa was reduced, and CMV dry matter proportion in the mixture increased only 3.5% over three years. Increasing CMV seeding rate did not increase its DM percent in the mixtures, indicating a high allelopathic effect of alfalfa. Forage DM yield of all mixtures was linearly correlated to the proportion of alfalfa, and adding hybrid brome did not increase the DM yield. Forage DM yield was higher for the three-cut than the two-cut treatments for CMV-alfalfa mixtures, but there was no difference between the cutting frequency for CMV-alfalfa- hybrid brome mixtures. Fiber concentrations decreased linearly with increased CMV seeding rate in the mixtures. This study showed CMV establishment in alfalfa mixtures was reduced in a same row seeding, and the allelopathic effect was not reduced by lower alfalfa seeding rates or adding a grass.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 310 ◽  
Author(s):  
Meng Kong ◽  
Jing Kang ◽  
Cheng-Long Han ◽  
Yan-Jie Gu ◽  
Kadambot H.M Siddique ◽  
...  

In semi-arid areas, alfalfa (Medicago sativa L.) is widely grown, but its growth is often restricted due to limited rainfall and soil nutrients, particularly phosphorus (P). Nutrient resorption is an effective strategy for dealing with nutrient shortages. Alleviation of these limited resources using film mulch and P fertilization—which are common practices in semi-arid areas—can affect the internal recycling of such nutrients. Little is known about such effects in alfalfa and the relationship between resorption efficiency and forage yield. We conducted a two-year field experiment in the semi-arid Loess Plateau of China using film mulch and P fertilization to investigate the response to long-term increasing soil water and P availability on leaf nitrogen (N), P, and potassium (K) concentrations and nutrient resorption characteristics in alfalfa. In green leaves, mulching significantly increased P concentration by an average of 5.5% but it had no significant effect on N concentration over two years, and it decreased K concentration by 16.1% in 2017. P fertilization significantly increased N concentrations to a greater degree in 2018 (8.1%) than 2017 (1.6%). P fertilization also significantly increased P concentrations by an average of 34.1% over two years. In contrast, P fertilization significantly decreased K concentration in the mulched treatment by an average of 17.3% in 2017 and 21.8% in 2018, but it had no effect in the no-mulch treatment. In senescent leaves, mulching significantly increased N concentration by an average of 3.9% and P concentration by an average of 16.7%, but it had no significant effect on K concentration over two years, while P fertilization significantly decreased N and K concentrations over two years by an average of 7.5%, and 32.8%, respectively. P fertilization significantly increased senesced P concentration by an average of 11.9% in 2017 and 17.5% in 2018; and year × mulching × P fertilization had a significant interaction on senesced leaf P concentration. For resorption efficiency, mulching decreased P resorption efficiency by an average of 3.0%, but it had no impact on N or K resorption efficiency, while P fertilization increased the N, P, and K resorption efficiencies in alfalfa by an average of 6.8%, 6.2%, and 76.4% over two years, respectively. Interactive effects of mulching and P fertilization were found on P and K resorption efficiencies over time. In addition, N and K resorption efficiencies were significantly higher in 2018 than in 2017. The application of P fertilizer without mulching resulted in positive correlations between forage yield and N, P, and K resorption efficiencies, but no correlations were observed under film mulch. That is, mulching changed the relationship between forage yield and N, P, and K resorption efficiencies in alfalfa, suggesting that N, P, and K resorption efficiencies may not be related to high yield. Our results provide new insights into the role of nutrient resorption in alfalfa in response to increasing soil water and P availability and the relationship between resorption efficiency and forage yield, which will help us to improve alfalfa yield in semi-arid regions.


1977 ◽  
Vol 57 (3) ◽  
pp. 873-881 ◽  
Author(s):  
R. MICHAUD ◽  
T. H. BUSBICE

Alfalfa (Medicago sativa L.) is a highly heterozygous cross-pollinating species, and most breeding efforts have been conducted on noninbred populations. The purpose of this study was to determine whether greater breeding progress could be made by selecting within partly inbred populations rather than within noninbred ones. One hundred and twenty F1 (noninbred) and 120 S1 (partly inbred) plants that were issued from crossing and selfing four alfalfa clones were evaluated for self-fertility. The most self-fertile 10% of the plants from each family were selected in each population. The selected plants within each level of inbreeding were intercrossed to produce an advanced generation in which the effectiveness of the selection was evaluated. Selection increased both self- and cross-fertility in the advanced generation. Selection was more effective at the F1 level than at the S1 level. Fertility was reduced drastically by inbreeding. The average self-fertility of the S1’s was only about 7% of the cross-fertility of their parental clones. An exponential model was proposed to describe the relationship between seed setting and the coefficient of inbreeding in the developing zygote. This model explained 95% of the variation among 11 unselected populations having differing levels of inbreeding.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1534
Author(s):  
Jing-Wei Fan ◽  
Xiao-Wei Yang ◽  
Tao Wang ◽  
Yuan Li ◽  
Hong Zhao ◽  
...  

Genotypic variations of alfalfa (Medicago sativa L.) to both phosphorus (P) deficiency and water deficiency are evident on the Loess Plateau of China. Here, we compare the adaptive mechanisms between an introduced cultivar (Arkaxiya) and a landrace (Longzhong) subjected to P- and water-limited conditions. The two genotypes were grown in a soil medium with 0, 4.2, 8.4 and 16.8 μg applied P per gram dry soil. Three water treatments were imposed (maintained at 75–90%, 45–55% and 30–35% of pot capacity (PC)) 28 days after sowing (DAS). At high soil P and high soil water content (SWC), high rates of net photosynthesis (Pn) contributed to greater plant growth and P-use efficiency (PUE) in the introduced Arkaxiya compared to the landrace Longzhong. However, at low SWC, Longzhong had enhanced antioxidative defense (mainly SOD and CAT) compared to Arkaxiya. In addition, shorter shoot length and greater branching in Longzhong than Arkaxiya may also facilitate adaptation to low SWC. The contrasting adaptive mechanisms of the two genotypes provide a number of early-screening parameters associated with plant growth for the selection and introduction of alfalfa targeted at different rainfall and available P environments.


Sign in / Sign up

Export Citation Format

Share Document