Pasture type and fertilization effects on soil chemical properties and nutrient redistribution

2001 ◽  
Vol 81 (4) ◽  
pp. 395-404 ◽  
Author(s):  
W. Chen ◽  
W P McCaughey ◽  
C A Grant ◽  
L D Bailey

Soil samples were collected from beef pastures varying in species composition and fertilizer inputs after being grazed by cow-calf pairs for 4 yr (1995-1998) near Brandon, Manitoba. The objective of this experiment is to examine the impact of 4 yr of continuous rotational grazing on soil chemical properties and nutrient redistribution in mixed alfalfa-grass and pure-grass pastures with or without fertilization. Pastures were established on an Orthic Black Chernozemic, fine sandy-loam soil. Compared with N-fertilized pure-grass pastures, alfalfa-grass pastures had greater seasonal soil mineral-N supply, and tended to have higher total soil C, N and organic C. In grazed systems in this environment, the use of alfalfa as the primary N source may be more profitable and sustainable than using fertilizer N. However, considering the seasonal changes in soil nitrification rate observed in alfalfa-grass pastures, caution needs to be taken when stands with high legume content are used to maximize animal performance, because this may increase the risk of N losses into the environment. Fertilization over a 5-yr period (1994-1998) tended to lower surface soil pH. Application of P significantly increased soil “extractable” P levels in the top 15-cm soil layer. However, K fertilization only increased surface soil “extractable” K slightly compared with unfertilized pastures. There was also no effect of S application on soil “extractable” S. Zone effects on soil mineral N and soil “extractable” P, K and S were limited to the surface (0–7.5 cm). For mineral N, the zone effect seemed to be more pronounced in first rotation than in second rotation. The magnitude of K redistribution was greater than for S and P due to higher K intake and excretion. Use of rotational stocking with short grazing periods appears to have resulted in a relatively even redistribution of nutrients derived from animal excreta. Key words: Grazing, beef pasture, nitrogen dynamics, sustainability

2008 ◽  
Vol 88 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Philippe Rochette ◽  
Denis A Angers ◽  
Martin H Chantigny ◽  
Bernard Gagnon ◽  
Normand Bertrand

Manure is known to increase soil N2O emissions by stimulating nitrification and denitrification processes. Our objective was to compare soil-surface N2O emissions following the application of liquid and solid dairy cattle manures to a loamy and a clay soil cropped to silage maize. Manures were applied in 2 consecutive years at rates equivalent to 150 kg total N ha-1 and compared with a control treatment receiving an equivalent rate of synthetic N. Soil-surface N2O fluxes, soil temperature, and soil water, nitrate and ammonium contents were monitored weekly in manured and control plots. From 60 to 90% of seasonal N2O emissions occurred during the first 40 d following manure and synthetic fertilizer applications, indicating that outside that period one or several factors limited N2O emissions. The period of higher emissions following manure and fertilizer application corresponded with the period when soil mineral N contents were highest (up to 17 g NO3−-N m-2) and water-filled pore space (WFPS) was greater than 0.5 m3 m-3. The absence of significant N2O fluxes later in the growing season despite high WFPS levels indicated that the stimulating effect of organic and synthetic N additions on soil N2O production was relatively short-lived. Fertilization of silage maize with dairy cattle manure resulted in greater or equal N2O emissions than with synthetic N. This was observed despite lower overall soil mineral N contents in the manured plots, indicating that other factors affected by manure, possibly additional C substrates and enhanced soil respiration, resulted in greater denitrification and N2O production. Silage maize yields in the manured soils were lower than those receiving synthetic N, indicating that the N2O emissions per kilogram of harvested biomass were greater for manures than for synthetic N. Our results also suggest that the main source of N2O was nitrification in the loam and denitrification in the clay soil. There was no clear difference in N2O emissions between liquid and solid manures. The variable effects of liquid and solid manure addition reported in the literature on soil N2O emissions likely result from the variable composition of the manures themselves as well as from interactions with other factors such as soil environment and farming practices. A better characterization of the availability of manure C and N is required to assess the impact of manure application on soil N2O emissions under field conditions. Key words: Greenhouse gases, N2O, maize, manure


1999 ◽  
Vol 47 (2) ◽  
pp. 123-133 ◽  
Author(s):  
A.P. Everaarts ◽  
P. De Willigen

The effects of the rate and the method of N application on yield and quality of broccoli cv. Emperor were studied during 3 seasons at Andijk and Lelystad, Netherlands. Different amounts of N fertilizer were applied broadcast or band placed at planting. Band placement of fertilizer increased the yield in 5 out of 8 experiments. Application of N resulted in larger heads. No relationship was found between soil mineral N at planting and optimum N application because of the narrow range of soil mineral N at planting. Split application had no or a negative effect on yield and therefore is not recommended. For optimum yields a rate of 270 kg N/ha is recommended, minus the mineral N in the 0-60 cm soil layer, band placed at planting. For broadcast application 275 kg N minus the soil mineral N is recommended at planting, but yields will be lower than with band placement of fertilizer.


SOIL ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 213-224 ◽  
Author(s):  
Juhwan Lee ◽  
Gina M. Garland ◽  
Raphael A. Viscarra Rossel

Abstract. Soil N is an essential element for plant growth, but its mineral forms are subject to loss from the environment by leaching and gaseous emissions. Despite its importance for the soil-plant system, factors controlling soil mineral N contents over large spatial scales are not well understood. We used NH4+ and NO3- contents (0–30 cm depth) from 469 sites across Australia and determined soil controls on their regional variation. Soil mineral N varied regionally but depended on the different land uses. In the agricultural region of Australia, NH4+ tended to be similar (median 4.0 vs. 3.5 mg N kg−1) and NO3- was significantly enriched (3.0 vs. 1.0 mg N kg−1), compared to the non-agricultural region. The importance of soil controls on mineral N in the agricultural region, identified by the model trees algorithm Cubist, showed that NH4+ was affected by total N, cation exchange capacity (CEC) and pH. In the non-agricultural region, NH4+ was affected not only by CEC and pH, but also by organic C and total P. In each of the regions, NO3- was primarily affected by CEC, with more complex biophysical controls. In both regions, correlations between mineral N and soil C : N : P stoichiometry suggest that more NH4+ was found in P-depleted soil relative to total C and total N. However, our results showed that only in the non-agricultural region was NO3- sensitive to the state of C and its interaction with N and P. The models helped to explain 36 %–68 % of regional variation in mineral N. Although soil controls on high N contents were highly uncertain, we found that region-specific interactions of soil properties control mineral N contents. It is therefore essential to understand how they alter soil mechanisms and N cycling at large scales.


Author(s):  
Purwanto . ◽  
Eko Handayanto ◽  
Didik Suprayogo ◽  
John Bako Baon ◽  
Kurniatun Hairiah

The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in coffee farming is not yet well understood. The objectives of this study are to investigate the influence of various legume shading trees on the concentration of soil mineral N (N-NH4 + and N-NO3-), potential nitrification and to study the controlling factors of nitrification under field conditions. This field explorative research was carried out in Sumberjaya, West Lampung. Twelve observation plots covered four land use systems (LUS), i.e. 1) Coffee agroforestry with Gliricidiasepium as shade trees; 2) Coffee agroforestry with Gliricidiaas shade trees and Arachis pintoias cover crops; 3)Coffee agroforestry with Paraserianthes falcataria as shade trees; and 4) Mixed/multistrata coffee agroforestry with Gliricidiaand other fruit crops as shade trees. Measurements of soil mineral-N concentration were carried out every three weeks for three months. Results showed that shade tree species in coffee agroforestry significantly affected concentrations of soil NH4 +, NO3- and potential nitrification. Mixed coffee agroforestry had the highest NH4+/N-mineral ratio (7.16%) and the lowest potential nitrification (0.13 mg NO2-kg-1 hour -1 ) compared to other coffee agroforestry systems using single species of leguminous shade trees. Ratio of NH4 + /N-mineral increased 0.8—21% while potential nitrification decreased 55—79% in mixed coffee agroforestry compared to coffee agroforestry with Gliricidia or P. falcatariaas shade trees. Coffee agroforestry with P. falcatariaas shade trees had potential nitrification 53% lower and ratio of NH4 + /N-mineral concentration 20% higher than that with Gliricidia. Coffee agroforestry with P. falcataria as shade trees also had organic C content 17% higher, total N 40% higher, available P 112% higher than that with Gliricidia. The presence of A. pintoiin coffee agroforestry with Gliricidiareduced 56% potential nitrification but increased 19.3% of NH4+/N-mineral concentration. The low soil potential nitrification in the mixed coffee agroforestry had close relationship with the high content of soil organic matter. Key words : Nitrogen-mineral, nitrification, shading trees, agroforestry, Coffea canephora, nitrate, organic matter, intercropping,Gliricidia sepium, Arachis pintoi, Paraserianthes falcataria.


Author(s):  
Priit Tammeorg ◽  
Tero Brandstaka ◽  
Asko Simojoki ◽  
Juha Helenius

ABSTRACTWe studied the impact of added biochar on the N mineralisation dynamics of two organic fertilisers by incubating loamy sand soil for 133 days in controlled conditions. Biochar made from softwood chips was added to soil at 0, 4·6, 9·1 and 13·6 g kg–1 soil dry matter (DM) either alone, or in combination with meat bone meal (MBM) and composted cattle manure (CCM) fertilisers. Soil mineral N concentration was determined on days 0, 14, 28, 56, 84 and 133. Net N mineralisation in the MBM treatment was much larger than in the CCM or the unfertilised treatments. Constant soil moisture during the incubation provided suitable aerobic soil conditions for nitrification: after day 14, soil mineral N was dominated by nitrate in all treatments. Biochar additions decreased the mineral N concentrations in all treatments, probably because of immobilisation by microbes. In unfertilised soil, the immobilisation by biochar increased steadily with application rate and time, but in the MBM and CCM treatments, it started to decrease or level off after two months, possibly due to the turnover of microbial biomass. The main biochar-induced impacts on soil N mineralisation dynamics could be modelled by using standard and confined exponential models.


2018 ◽  
Author(s):  
Juhwan Lee ◽  
Gina M. Garland ◽  
Raphael A. Viscarra Rossel

Abstract. Soil N is an essential element for plant growth, but its mineral forms are subject to loss to the environment by leaching and gaseous emissions. Despite its importance for the soil-plant system, factors controlling soil mineral N concentrations over large spatial scales are not well understood. We used NH4+ and NO3− concentrations (0–30 cm depth) from 469 sites across Australia, and determined soil controls on their regional variation. Soil mineral N varied regionally but depended on the different land uses. In the agricultural region of Australia, NH4+ tended to be depleted (4.9 ± 4.8 vs. 5.6 ± 9.0 mg N kg−1) and NO3− was significantly enriched (6.0 ± 9.2 vs. 3.8 ± 9.9 mg N kg−1), compared to the non-agricultural ecological region. The relative importance of soil controls on mineral N in the agricultural region, identified by the model trees algorithm Cubist, showed that NH4+ was affected by total N, cation exchange capacity (CEC) and pH. In the ecological region, NH4+ was affected by CEC and pH, but also organic C and total P. In each of the regions, NO3− was primarily affected by CEC, with more complex biophysical controls. In both regions, correlations between mineral N and soil C : N : P stoichiometry suggest that more NH4+ was found in P-depleted soil relative to total C and total N. However, our results showed that only in the other ecological region, NO3− was sensitive to the state of C and its interaction with N and P. The models helped to explain 36–68 % of regional variation in mineral N. Although soil controls on high N concentrations was highly uncertain, we found that region-specific interactions of soil properties control mineral N concentrations and therefore it is essential to understand how they alter soil mechanisms and N cycling at large scales.


2019 ◽  
Vol 8 (4) ◽  
pp. 6793-6797

Peat soils is renowned for the low mineral-N concentration which is crucial for crop’s growth. One of the effective and conserving method to improve the soil mineral-N concentration is by planting leguminous cover crop (LCC) which is common in oil palm plantation area. However, different LCCs was found to release different concentration of mineral-N into the soils. Hence, this study aims to determine the concentration of soil mineral-N in form of soil ammonium-N (NH4 + ) and soil nitrate-N (NO3 - ) by different types of LCCs namely Mucuna bracteata, Calopogonium mucunoides, Pueraria javanica and Centrosema pubescens as well as to evaluate the effects on physico-chemical properties of peat soils. Results showed most of the LCCs can survive in acidic peat condition whilst improving the concentration of mineral-N in the soils. Mucuna bracteata was found to release a significant amount of mineral-N into the soils and shows a vigorous growth compared to others during the study period. However, it should be noted that different LCCs required distinct time to fix N since the maturity for different LCCs is different. Hence, prolonged studies on release of mineral N into the soil by LCCs are recommended.


2011 ◽  
Vol 8 (8) ◽  
pp. 2341-2350 ◽  
Author(s):  
L. Song ◽  
X. Bao ◽  
X. Liu ◽  
Y. Zhang ◽  
P. Christie ◽  
...  

Abstract. Chinese grasslands are extensive natural ecosystems that comprise 40 % of the total land area of the country and are sensitive to N deposition. A field experiment with six N rates (0, 30, 60, 120, 240, and 480 kg N ha−1 yr−1) was conducted at Duolun, Inner Mongolia, during 2005 and 2010 to identify some effects of N addition on a temperate steppe ecosystem. The dominant plant species in the plots were divided into two categories, grasses and forbs, on the basis of species life forms. Enhanced N deposition, even as little as 30 kg N ha−1 yr−1 above ambient N deposition (16 kg N ha−1 yr−1), led to a decline in species richness. The cover of grasses increased with N addition rate but their species richness showed a weak change across N treatments. Both species richness and cover of forbs declined strongly with increasing N deposition as shown by linear regression analysis (p < 0.05). Increasing N deposition elevated aboveground production of grasses but lowered aboveground biomass of forbs. Plant N concentration, plant δ15N and soil mineral N increased with N addition, showing positive relationships between plant δ15N and N concentration, soil mineral N and/or applied N rate. The cessation of N application in the 480 kg N ha−1 yr−1 treatment in 2009 and 2010 led to a slight recovery of the forb species richness relative to total cover and aboveground biomass, coinciding with reduced plant N concentration and soil mineral N. The results show N deposition-induced changes in soil N transformations and plant N assimilation that are closely related to changes in species composition and biomass accumulation in this temperate steppe ecosystem.


2021 ◽  
Author(s):  
Jie Luo ◽  
Lukas Beule ◽  
Guodong Shao ◽  
Edzo Veldkamp ◽  
Marife D. Corre

&lt;p&gt;Monoculture croplands are considered as major sources of the greenhouse gas, nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O). The conversion of monoculture croplands to agroforestry systems, e.g., integrating trees within croplands, is an essential climate-smart management system through extra C sequestration and can potentially mitigate N&lt;sub&gt;2&lt;/sub&gt;O emissions. So far, no study has systematically compared gross rates of N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake between cropland agroforestry and monoculture. In this study, we used an in-situ &lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;2&lt;/sub&gt;O pool dilution technique to simultaneously measure gross N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake over two consecutive growing seasons (2018 - 2019) at three sites in Germany: two sites were on Phaeozem and Cambisol soils with each site having a pair of cropland agroforestry and monoculture systems, and an additional site with only monoculture on an Arenosol soil prone to high nitrate leaching. Our results showed that cropland agroforestry had lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and higher gross N&lt;sub&gt;2&lt;/sub&gt;O uptake than in monoculture at the site with Phaeozem soil (P &amp;#8804; 0.018 &amp;#8211; 0.025) and did not differ in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake with cropland monoculture at the site with Cambisol soil (P &amp;#8805; 0.36). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were positively correlated with soil mineral N and heterotrophic respiration which, in turn, were correlated with soil temperature, and with water-filled pore space (WFPS) (r = 0.24 &amp;#8210; 0.54, P &lt; 0.01). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were also negatively correlated with nosZ clade I gene abundance (involved in N&lt;sub&gt;2&lt;/sub&gt;O-to-N&lt;sub&gt;2&lt;/sub&gt; reduction, r = -0.20, P &lt; 0.05). These findings showed that across sites and management systems changes in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were driven by changes in substrate availability and aeration condition (i.e., soil mineral N, C availability, and WFPS), which also influenced denitrification gene abundance. The strong regression values between gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and net N&lt;sub&gt;2&lt;/sub&gt;O emissions (R&lt;sup&gt;2 &lt;/sup&gt;&amp;#8805; 0.96, P &lt; 0.001) indicated that gross N&lt;sub&gt;2&lt;/sub&gt;O emissions largely drove net soil N&lt;sub&gt;2&lt;/sub&gt;O emissions. Across sites and management systems, annual soil gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake were controlled by clay contents which, in turn, correlated with indices of soil fertility (i.e., effective cation exchange capacity, total N, and C/N ratio) (Spearman rank&amp;#8217;s rho = -0.76 &amp;#8211; 0.86, P &amp;#8804; 0.05). The lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions from the agroforestry tree rows at two sites indicated the potential of agroforestry in reducing soil N&lt;sub&gt;2&lt;/sub&gt;O emissions, supporting the need for temperate cropland agroforestry to be considered in greenhouse gas mitigation policies.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document