scholarly journals Corrosion Inhibition Efficiency of 3-Hydroxy-2-Methylquinazoline-4-one on Mild Steel in 1 M H2SO4 and 1 M HCl Acid at Different Temperatures

2007 ◽  
Vol 26 (2) ◽  
pp. 221-233 ◽  
Author(s):  
W A Siddiqi ◽  
V M Chaubey
2019 ◽  
Author(s):  
Chem Int

The corrosion inhibition characteristics of two medicinal molecules phenylalanine and rutin on mild steel in 1.0M Hydrochloric acid were evaluated using gravimetric method. Corrosion inhibition efficiency of 83.78 and 90.40 % was obtained respectively after seven days. However, phenylalanine showed weak accumulative higher corrosion inhibition efficiency. The presence of both molecules in the corrosive environment reduced the corrosion rate constant and increased the material half-life. Thermodynamic data calculated suggests a spontaneous adsorption of the molecules on the mild steel’s surface.


Author(s):  
Lalita Saini ◽  
R. K. Upadhyay

Mass loss and Scanning Electron Microscope method (SEM) have been used to study the corrosion inhibition efficiency on mild steel and aluminium using synthesized inhibitors i.e. N-Benzylidene aniline (CI1) and N-Benzylidene 4-methylaniline (CI2) in Trichloroacetic acid (TCAA). Study reveals that both mild steel and aluminium are prone to corrosion in organic acid like TCAA. Out of these two metals, aluminium is more vigorously corroded by the TCAA in comparison to mild steel in same conditions and synthesized inhibitors CI1 and CI2 are almost same effective for mild steel and aluminium.


2017 ◽  
Vol 41 (21) ◽  
pp. 13114-13129 ◽  
Author(s):  
Neeraj Kumar Gupta ◽  
Chandrabhan Verma ◽  
R. Salghi ◽  
H. Lgaz ◽  
A. K. Mukherjee ◽  
...  

Phosphorus containing compounds have been evaluated by experimental and theoretical techniques and more than 96% corrosion inhibition efficiency was observed at 200 ppm concentration.


2014 ◽  
Vol 1015 ◽  
pp. 692-695
Author(s):  
Wei Shang ◽  
Zhou Lan Yin ◽  
Yu Qing Wen ◽  
Xu Feng Wang

the corrosion inhibition of polyethylene glycol 200 for magnesium alloy AZ91 in 1% NaCl solution at different temperatures are studied. The morphology of the sample at 25°C is analyzed by SEM. And CHI600C electrochemistry workstation is employed to investigate the corrosion inhibition of the samples. The results show that the corrosion inhibition efficiency of polyethylene glycol 200 to the magnesium alloy AZ91 is affected by temperature. Polyethylene glycol 200 has superior corrosion inhibition to the magnesium alloy at the temperature of 25°C.


2018 ◽  
Vol 34 (5) ◽  
pp. 2471-2476 ◽  
Author(s):  
Hamida Edan Salman ◽  
Asim A. Balakit ◽  
Ali Ahmed Abdulridha

A new aromatic Schiff base with azo linkage (AS) has been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The new compound (AS) has been evaluated as carbon steel corrosion inhibitor at different concentrations (0.005, 0.01, 0.02, 0.04 and 0.08 mM) and different temperatures (303 – 333 K). The corrosion inhibition efficiency was studied by potentiodynamic polarization and weight loss measurements. The effects of concentration and temperature on the inhibition efficiency were studied by potentiodynamic polarization studies, the results showed that increasing concentration of AS increases the inhibition efficiency while increasing the temperature decreases it, the highest corrosion inhibition efficiency, 93.9% was recorded with 0.08 mM of AS at 313 K in 1 M H2SO4. Weight loss measurements showed that the inhibition efficiency reached 97.1% in the presence of AS (0.08 mM) at 313 K. The adsorption process was found to obey Langmuir isotherm, and the adsorption thermodynamic parameters were studied. Scanning electron microscope (SEM) was used to confirm the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Saeed Mohammadi ◽  
Fatemeh Baghaei Ravari ◽  
Athareh Dadgarinezhad

An investigation was conducted to improve the corrosion inhibition efficiency of molybdate-based inhibitors for mild steel which is the main construction material of cooling water systems, using nitroethane as an organic compound beside zinc. In this study a new molybdate-based inhibitor was introduced with the composition of 60 ppm molybdate, 20 ppm nitrite, 20 ppm nitroethane, and 10 ppm zinc. Inhibition efficiency of molybdate alone and with nitrite, nitroethane, and zinc on the uniform corrosion of mild steel in stimulated cooling water (SCW) was assessed by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance (AC impedance) measurements. Weight loss measurements were made with coupon testing specimens in the room temperature for 48 h. Studies of electron microscopy, including scanning electron microscopy (SEM) photograph and X-ray energy dispersive spectrometry (EDS) microanalysis, were used. The results obtained from the polarization and AC impedance curves were in agreement with those from the corrosion weight loss results. The results indicate that the new inhibitor is as effective as molybdate alone, though at one-ninth of the concentration range of molybdate, which is economically favorable.


2019 ◽  
Vol 7 (2) ◽  
pp. 72-77
Author(s):  
M.B. Geetha ◽  
◽  
J. Sathish ◽  
S. Rajendran ◽  
◽  
...  

The formulation consisting of 100 ppm Thiourea, 25 ppm Zn2+ and 250 ppm of L-Phenylalanine has 95% corrosion inhibition efficiency with a synergistic effect among Thiourea, L-Phenylalanine and Zn2+ ions. Polarization study shows that this formulation as a mixed inhibitor. FTIR spectra exposed the presence of Fe2+-Thiourea, Fe2+-L-Phenylalanine complex and Zn(OH)2 in protective film. AFM study confirmed the metal surface smoothness following engrossed in the inhibitor and the presence of formed protective film on the metal surface.


Sign in / Sign up

Export Citation Format

Share Document