scholarly journals Suppressive effect of red light irradiation on attractiveness of Thrips palmi Karny (Thysanoptera: Thripidae)

2021 ◽  
Vol 63 (0) ◽  
pp. 75-80
Author(s):  
Mizuki Yamamoto ◽  
Shouhei Ueda ◽  
Norio Hirai
2020 ◽  
Author(s):  
Shengyu Liu

To investigate the effect of post-harvest light irradiation on the accumulation of flavonoids and limonoids, harvestedNewhall navel oranges were continuously exposed to light-emitting diode (LED) and ultraviolet (UV) light irradiationfor 6 days, and the composition and content of flavonoids and limonoids in the segments were determined usingUPLC-qTOF-MS at 0, 6, and 15 days after harvest. In total, six polymethoxylated flavonoids (PMFs), fiveflavoneO/C-glycosides, seven flavanone-O-glycosides, and three limonoids were identified in the segments. Theaccumulation of these components was altered by light irradiation. Red and blue light resulted in higher levels ofPMFs during exposure periods. The accumulation of PMFs was also significantly induced after white light, UVBand UVC irradiation were removed. Red and UVC irradiation induced the accumulation of flavone and flavanoneglycosides throughout the entire experimental period. Single light induced limonoid accumulation during exposureperiods, but limonoid levels decreased significantly when irradiation was removed. Principal component analysisshowed a clear correlation between PMFs and white light, between flavonoid glycosides and red light and UVC,and between limonoids and UVC. These results suggest that the accumulation of flavonoids and limonoids in citrusis regulated by light irradiation. White light, red light and UVC irradiation might be a good potential method forimproving the nutrition and flavor quality of post-harvest citrus.


1986 ◽  
Vol 27 (5) ◽  
pp. 765-773 ◽  
Author(s):  
Satoru Tokutomi ◽  
Yasunori Inoue ◽  
Naoki Sato ◽  
Kotaro T. Yamamoto ◽  
Masaki Furuya

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1755 ◽  
Author(s):  
Shengyu Liu ◽  
Linping Hu ◽  
Dong Jiang ◽  
Wanpeng Xi

To investigate the effect of post-harvest light irradiation on the accumulation of flavonoids and limonoids, harvested Newhall navel oranges were continuously exposed to light-emitting diode (LED) and ultraviolet (UV) light irradiation for 6 days, and the composition and content of flavonoids and limonoids in the segments were determined using UPLC-qTOF-MS at 0, 6, and 15 days after harvest. In total, six polymethoxylated flavonoids (PMFs), five flavone-O/C-glycosides, seven flavanone-O-glycosides, and three limonoids were identified in the segments. The accumulation of these components was altered by light irradiation. Red and blue light resulted in higher levels of PMFs during exposure periods. The accumulation of PMFs was also significantly induced after white light, UVB and UVC irradiation were removed. Red and UVC irradiation induced the accumulation of flavone and flavanone glycosides throughout the entire experimental period. Single light induced limonoid accumulation during exposure periods, but limonoid levels decreased significantly when irradiation was removed. Principal component analysis showed a clear correlation between PMFs and white light, between flavonoid glycosides and red light and UVC, and between limonoids and UVC. These results suggest that the accumulation of flavonoids and limonoids in citrus is regulated by light irradiation. White light, red light and UVC irradiation might be a good potential method for improving the nutrition and flavor quality of post-harvest citrus.


2018 ◽  
Vol 115 (30) ◽  
pp. 7717-7722 ◽  
Author(s):  
Meng Li ◽  
Fengxia Bao ◽  
Yue Zhang ◽  
Wenjing Song ◽  
Chuncheng Chen ◽  
...  

Soot, which consists of organic carbon (OC) and elemental carbon (EC), is a significant component of the total aerosol mass in the atmosphere. Photochemical oxidation is an important aging pathway for soot. It is commonly believed that OC is photoactive but EC, albeit its strong light absorption, is photochemically inert. Here, by taking advantage of the different light absorption properties of OC and EC, we provide direct experimental evidence that EC also plays an important role in the photochemical aging of soot by initiating the oxidation of OC, even under red light irradiation. We show that nascent soot, in addition to undergoing photochemical oxidation under blue light with a wavelength of 440 nm, undergoes similar oxidation under red light irradiation of λ = 648 nm (L648). However, separated OC (extracted from soot by n-hexane) and EC exhibit little reactivity under L648. These observations indicate that EC plays a pivotal role in photoaging of soot by adsorbing light to initiate the oxidation of OC. Comparison of in situ IR spectra and photoelectrochemical behaviors suggests that EC-initiated photooxidation of OC proceeds through an electron transfer pathway, which is distinct from the photoaging induced by light absorption of OC. Since the absorption spectra of EC have a much larger overlap with the solar spectra than those of OC, our results provide insight into the chemical mechanism leading to rapid soot aging by organic species observed from atmospheric field measurements.


ChemistryOpen ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 226-230 ◽  
Author(s):  
Kohei Matsuzaki ◽  
Tomoya Hiromura ◽  
Etsuko Tokunaga ◽  
Norio Shibata

2006 ◽  
Vol 958 ◽  
Author(s):  
Keisuke Sato ◽  
Satoshi Yanagisawa ◽  
Akio Funakubo ◽  
Yasuhiro Fukui ◽  
Kenji Hirakuri ◽  
...  

ABSTRACTWe have studied the biological properties of nanocrystalline silicon (nc-Si) particles after injection at various places in a mouse. The nc-Si particles with a size of 2.5 nm and a concentration of 1.3 mg/ml were dispersed in a normal saline solution (NSS). The NSS dispersible nc-Si particles were safely injected into the mouse. When the nc-Si particles in the NSS were directly injected into the subcutaneous vein and the coronary artery of the heart by syringe, the condition of bloodstream at each place was confirmed by the red luminescence (peak wavelength at 720 nm) from the nc-Si particles under the ultraviolet (UV) light-irradiation. Moreover, the nc-Si particles in the NSS, which were injected into the vein in the sole, smoothly flowed to the small intestine, and the smooth fluidity of nc-Si particles was also observed for the condition of the peristalsis of the small intestine. The nc-Si particles in the small intestine emitted red light during peristalsis under the UV light-irradiation. The red luminescence at each place was very bright and could be clearly seen with the naked eye. These phenomenons were achieved by the utilization of the harmless material, the formation of nc-Si particles with the single-order-size and the realization of the stable surface modification to the nc-Si particles.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1105-1110 ◽  
Author(s):  
A. Suthaparan ◽  
S. Torre ◽  
A. Stensvand ◽  
M. L. Herrero ◽  
R. I. Pettersen ◽  
...  

When rose plants bearing colonies of Podosphaera pannosa were placed in a wind tunnel, the number of conidia trapped was directly proportional to intensity of daylight-balanced (white) light from 5 to 150 μmol m–2 s–1. Illumination of samples using blue (420 to 520 nm) light-emitting diodes (LEDs) increased the number of conidia trapped by a factor of approximately 2.7 over white light but germination of conidia under blue light was reduced by approximately 16.5% compared with conidia germination under white light. The number of conidia trapped under far-red (>685 nm) LEDs was approximately 4.7 times higher than in white light, and 13.3 times higher than under red (575 to 675 nm) LEDs, and germination was not induced compared with white light. When mildewed plants were exposed to cycles of 18 h of white light followed by 6 h of blue, red, far-red light, or darkness, light from the red LEDs reduced the number of conidia trapped by approximately 88% compared with darkness or far-red light. Interrupting the above dark period with 1 h of light from red LEDs also reduced the number of conidia trapped, while a 1-h period of light from far-red following the 1 h of light from red LEDs nullified the suppressive effect of red light. Our results indicate that brief exposure to red light during the dark interval may be as effective as continuous illumination in suppressing powdery mildew in greenhouse rose plant (Rosa × hybrida).


Sign in / Sign up

Export Citation Format

Share Document