scholarly journals The Nature and Function of Immunogenic Tumor Proteins That Characterize Pancreatic and Colorectal Cancer: A Review

2015 ◽  
Vol 06 (05) ◽  
Author(s):  
Arlen M, Arlen P Crawford J ◽  
Coppa G Saric O
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinjun Ye ◽  
Jidong Liu ◽  
Tao Tang ◽  
Le Xin ◽  
Xing Bao ◽  
...  

Abstract Background LINC00963 is high-expressed in various carcinomas, but its expression and function in colorectal cancer (CRC) have not been explored. This study explored the role and mechanism of LINC00963 in CRC. Methods The expression of LINC00963 in CRC and its relationship with prognosis were examined by starBase and survival analysis. The effects of LINC00963, miR-532-3p and HMGA2 on the biological characteristics and EMT-related genes of CRC cells were studied by RT-qPCR, CCK-8, clone formation experiments, flow cytometry, scratch test, Transwell, and Western blot. Xenograft assay and immunohistochemistry were performed to verify the effect of LINC00963 on tumor growth. The correlation among LINC00963, miR-532-3p, and HMGA2 was analyzed by bioinformatics analysis, luciferase assay, and Pearson test. Results LINC00963 was high-expressed in CRC, and this was associated with poor prognosis of CRC. Silencing LINC00963 inhibited the activity, proliferation, migration, and invasion of CRC cells, MMP-3 and MMP-9 expressions, moreover, it also blocked cell cycle progression, and inhibited tumor growth and Ki67 expression. However, overexpression of LINC00963 showed the opposite effects to silencing LINC00963. LINC00963 targeted miR-532-3p to regulate HMGA2 expression. Down-regulation of miR-532-3p promoted cell proliferation, migration and invasion, and expressions of MMP-3 and MMP-9, and knockdown of HMGA2 reversed the effect of miR-532-3p inhibitor. Up-regulation of miR-532-3p inhibited the biological functions of CRC cells, and overexpression of HMGA2 reversed the miR-532-3p mimic effect. Conclusion LINC00963 affects the development of CRC through the miR-532-3p/HMGA2 axis.


2015 ◽  
Vol 95 (9) ◽  
pp. 995-1004 ◽  
Author(s):  
Panpan Zhan ◽  
Yuli Wang ◽  
Shihu Zhao ◽  
Chunyan Liu ◽  
Yunshan Wang ◽  
...  

2021 ◽  
Author(s):  
Zhiyan Hu ◽  
Jiaxian Zhu ◽  
Yidan Ma ◽  
Ting Long ◽  
Lingfang Gao ◽  
...  

Abstract Background CIP4 (Cdc42-interacting protein 4), a member of the F-BAR family which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and closely associated with tumor invadopodia formation. However, the specific mechanism of the interaction between CIP4 and Cdc42 as well as the downstream signaling pathway in response in colorectal cancer (CRC) remains unknown, which is worth exploring for its impact on tumor infiltration and metastasis. Methods Immunohistochemistry and western blot analyses were performed to detect the expression of CIP4 and Cdc42. Their relationship with CRC clinicopathological characteristics was further analyzed. Wound-healing, transwell migration and invasion assays tested the effect of CIP4 on cells migration and invasion ability in vitro, and the orthotopic xenograft colorectal cancer mouse mode evaluated the tumor metastasis in vivo. The invadopodia formation and function were assessed by immunofluorescence, scanning electron microscopy (SEM) and matrix degradation assay. The interaction between CIP4 and Cdc42 was confirmed by co-immunoprecipitation (co-IP) and GST-Pull down assays. Immunofluorescence was used to observed the colocalization of CIP4, GTP-Cdc42 and invadopodia. The related downstream signaling pathway was investigated by western blot and immunofluorescence. Results CIP4 expression was significantly higher in human colorectal cancer tissues and correlated with the CRC infiltrating depth and metastasis as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and the tumor metastasis in vivo, while overexpression of CIP4 confirmed the opposite situation by promoting invadopodia formation and matrix degradation ability. In addition, we identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4 to participate in this process. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression CRC cells contributing to invadopodia formation while inhibition of either CIP4 or Cdc42 led to suppression of NF-κB pathway resulted in decrease quantity of invadopodia. Conclusion Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 929 ◽  
Author(s):  
Raheleh Amirkhah ◽  
Hojjat Naderi-Meshkin ◽  
Jaynish Shah ◽  
Philip Dunne ◽  
Ulf Schmitz

Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jiancheng Liu ◽  
Huaying An ◽  
Wei Yuan ◽  
Qiang Feng ◽  
Lianzhen Chen ◽  
...  

Colorectal cancer patients with diabetes had the high risks of total mortality. High expression of MSX2 is related to development of diabetes. There are few reports about the clinical implications and function of MSX2 in colorectal cancer (CRC). The purpose of this study is to investigate the relationship between the expression of MSX2 and clinical relevance and discover the possible mechanism of MSX2 in the development of CRC. Compared with adjacent tissues, the expression of MSX2 was higher in tumor tissues in both mRNA and protein levels (P<0.01). Kaplan-Meier survival analysis showed that high mRNA expression of MSX2 was associated with short survival time (P=0.013). Chi-squared test analysis indicated that MSX2 expression was related to tumor size (P=0.04), tumor locus (P=0.025), clinical stage (P<0.001), tumor invasion (P=0.003), lymphatic metastasis (P=0.01), and distant metastasis (P=0.033). In vitro experiments demonstrated that knockdown of MSX2 expression attenuated cell proliferation and invasion, promoted cell cycle arrest and apoptosis, and inactivated Akt phosphorylation. In conclusion, MSX2 played a crucial role in the progression of CRC and may be a potential novel prognostic factor and therapeutic target for CRC therapy. Our work may provide certain enlightenment for investigating the mechanism of MSX2 in the process of diabetes.


2010 ◽  
Vol 138 (5) ◽  
pp. S-733
Author(s):  
Mehrnaz Fatemi ◽  
Hassan Brim ◽  
Krishan Kumar ◽  
Hassan Ashktorab

2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Hajar I. Ayoub ◽  
Y. Nancy You ◽  
Hop Sanderson Tran Cao ◽  
Chung-Yuan Hu ◽  
Christina Bailey ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-38 ◽  
Author(s):  
María Antonia Lizarbe ◽  
Jorge Calle-Espinosa ◽  
Eva Fernández-Lizarbe ◽  
Sara Fernández-Lizarbe ◽  
Miguel Ángel Robles ◽  
...  

Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document