In Silico Identification of Transcription Factors Constituting the Regulatory Network that Drives Adipogenic Differentiation in Human Adipose-derived Stromal Cells In Vitro

2016 ◽  
Vol 6 (6) ◽  
Author(s):  
Melvin Anyasi Ambele ◽  
Michael Sean Pepper
2009 ◽  
Vol 15 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Femke Verseijden ◽  
Holger Jahr ◽  
Sandra J. Posthumus-van Sluijs ◽  
Timo L. Ten Hagen ◽  
Steven E.R. Hovius ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


2014 ◽  
Vol 27 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Tina Ritschel ◽  
Susanne M. A. Hermans ◽  
Marieke Schreurs ◽  
Jeroen J. M. W. van den Heuvel ◽  
Jan B. Koenderink ◽  
...  

BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Tao Ke ◽  
Huihui Cao ◽  
Junyan Huang ◽  
Fan Hu ◽  
Jin Huang ◽  
...  

2011 ◽  
Vol 17 (12) ◽  
pp. 3063-3073 ◽  
Author(s):  
Amit Nargotra ◽  
Sujata Sharma ◽  
Mohd Iqbal Alam ◽  
Zabeer Ahmed ◽  
Asha Bhagat ◽  
...  

2018 ◽  
Vol 120 (3) ◽  
pp. 3353-3361 ◽  
Author(s):  
Phongphat Obounchoey ◽  
Lueacha Tabtimmai ◽  
Praphasri Suphakun ◽  
Kannika Thongkhao ◽  
Chatchakorn Eurtivong ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5473
Author(s):  
Roman Matějka ◽  
Miroslav Koňařík ◽  
Jana Štěpanovská ◽  
Jan Lipenský ◽  
Jaroslav Chlupáč ◽  
...  

(1) Background: Decellularized xenogeneic tissues are promising matrices for developing tissue-engineered cardiovascular grafts. In vitro recellularization of these tissues with stromal cells can provide a better in vivo remodelling and a lower thrombogenicity of the graft. The process of recellularization can be accelerated using a cultivation bioreactor simulating physiological conditions and stimuli. (2) Methods: Porcine pericardium was decellularized using a custom-built decellularization system with an optimized protocol. Autologous porcine adipose-derived stromal cells (PrASCs), isolated from the subcutaneous fat tissue, were used for recellularizing the decellularized pericardium. A custom cultivation bioreactor allowing the fixing of the decellularized tissue into a special cultivation chamber was created. The bioreactor maintained micro-perfusion and pulsatile pressure stimulation in order to promote the ingrowth of PrASCs inside the tissue and their differentiation. (3) Results: The dynamic cultivation promoted the ingrowth of cells into the decellularized tissue. Under static conditions, the cells penetrated only to the depth of 50 µm, whereas under dynamic conditions, the tissue was colonized up to 250 µm. The dynamic cultivation also supported the cell differentiation towards smooth muscle cells (SMCs). In order to ensure homogeneous cell colonization of the decellularized matrices, the bioreactor was designed to allow seeding of the cells from both sides of the tissue prior to the stimulation. In this case, the decellularized tissue was recolonized with cells within 5 days of dynamic cultivation. (4) Conclusions: Our newly designed dynamic bioreactor markedly accelerated the colonization of decellularized pericardium with ASCs and cell differentiation towards the SMC phenotype.


2016 ◽  
Vol 340 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Roberta Bonafede ◽  
Ilaria Scambi ◽  
Daniele Peroni ◽  
Valentina Potrich ◽  
Federico Boschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document