scholarly journals Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.

2020 ◽  
Author(s):  
Shubham Haribhau Mehatre ◽  
Irene Mariam Roy ◽  
Atreyi Biswas ◽  
Devila Prit ◽  
Sarah Schouteden ◽  
...  

AbstractOutside-in integrin signaling regulates cell fate decisions in a variety of cell types, including hematopoietic stem cells (HSCs). Our earlier published studies showed that interruption of Periostin (POSTN) and Integrin-αv (ITGAV) interaction induces faster proliferation in HSCs with developmental stage dependent functional effects. Here, we examined the role of POSTN-ITGAV axis in lympho-hematopoietic activity in spleen that hosts rare population of HSCs, the functional regulation of which is not clearly known. Vav-iCre mediated deletion of Itgav in hematopoietic system led to higher proliferation rates, resulting in increased frequency of primitive HSCs in adult spleen. However, in vitro CFU-C assays demonstrated a poorer differentiation potential following Itgav deletion. This also led to a decrease in the white pulp area with a significant decline in the B-cell numbers. Systemic deletion of its ligand, POSTN, phenocopied the effects noted in Vav-Itgav−/− mice. Histological examination of Postn deficient spleen also showed increase in the spleen trabecular areas. Surprisingly, these were the myofibroblasts of the trabecular and capsular areas that expressed high levels of POSTN within the spleen tissue. In addition, vascular smooth muscle cells also expressed POSTN. Through CFU-S12 assays, we showed that hematopoietic support potential of stroma in Postn deficient splenic hematopoietic niche was defective. Overall, we demonstrate that POSTN-ITGAV interaction plays important role in spleen lympho-hematopoiesis.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 96-96
Author(s):  
Marta Derecka ◽  
Senthilkumar Ramamoorthy ◽  
Pierre Cauchy ◽  
Josip Herman ◽  
Dominic Grun ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are in daily demand worldwide because of their ability to replenish entire blood system. However, the in vitro expansion of HSPC is still a major challenge since the cues from bone marrow microenvironment remain largely elusive. Signals coming from the bone marrow niche, and specifically mesenchymal stem and progenitor cells (MSPC), orchestrate maintenance, trafficking and stage specific differentiation of HSPCs. Although, it is generally accepted that MSPCs are essential for hematopoietic homeostasis and generating multiple types of stromal cells, the exact transcriptional networks regulating MSPCs are not well established. Early B-cell factor 1 (Ebf1) has been discovered as lineage-specific transcription factor governing B lymphopoiesis. Additionally, it has been shown to play important role in differentiation of adipocytes, which are a niche component supporting hematopoietic regeneration. Thus, in this study we seek to examine if Ebf1 has an alternative function in non-hematopoietic compartment of bone marrow, specifically in mesenchymal stromal cells that maintain proper hematopoiesis. Here, we identified Ebf1 as new transcription regulator of MSPCs activity. Mesenchymal progenitors isolated from Ebf1-/- mice show diminished capacity to form fibroblasticcolonies (CFU-F) indicating reduced self-renewal. Moreover, cells expanded from these colonies display impaired in vitro differentiation towards osteoblasts, chondrocytes and adipocytes. In order to test how this defective MSPCs influence maintenance of HSPCs, we performed long-term culture-initiating cell assay (LTC-IC). After 5 weeks of co-culture of Ebf1-deficient stromal cells with wild type HSPCs we could observe significantly decreased number of cobblestone and CFU colonies formed by primitive HSPCs, in comparison to co-cultures with control stromal cells. Furthermore, in vivo adoptive transfers of wild type HSPCs to Ebf1+/- recipient mice showed a decrease in the absolute numbers of HSPCs in primary recipients and reduced donor chimerism within the HSCP compartment in competitive secondary transplant experiments. Additionally, Prx1-Cre-mediated deletion of Ebf1 specifically in MSPCs of mice leads to reduced frequency and numbers of HSPCs and myeloid cells in the bone marrow. These results confirm that mesenchymal stromal cells lacking Ebf1 render insufficient support for HSPCs to sustain proper hematopoiesis. Interestingly, we also observed a reduced ability of HSPCs sorted from Prx1CreEbf1fl/fl mice to form colonies in methylcellulose, suggesting not only impaired maintenance but also hindered function of these cells. Moreover, HSPCs exposed to Ebf1-deficient niche exhibit changes in chromatin accessibility with reduced occupancy of AP-1, ETS, Runx and IRF motifs, which is consistent with decreased myeloid output seen in Prx1CreEbf1fl/fl mice. These results support the hypothesis that defective niche can cause epigenetic reprograming of HSPCs. Finally, single cell and bulk transcriptome analysis of MSPCs lacking Ebf1 revealed differences in the niche composition and decreased expression of lineage-instructive signals for myeloid cells. Thus, our study establishes Ebf1 as a novel regulator of MSPCs playing a crucial role in the maintenance and differentiation of HSPCs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Thomas Bessy ◽  
Benoit Souquet ◽  
Benoit Vianay ◽  
Alexandre Schaeffer ◽  
Thierry Jaffredo ◽  
...  

AbstractHematopoietic stem and progenitor cells (HSPCs) are located in the bone marrow, where they regulate the permanent production and renewal of all blood-cell types. HSPC proliferation and differentiation is locally regulated by their interaction with cells forming specific microenvironments close to the bone matrix or close to blood vessels. However, the cellular mechanisms underlying HSPC’s interaction with these cells and their potential impact on HSPC polarity is still poorly understood. Here we modelled the bone-marrow niche using microfluidic technologies in a bone-marrow on a chip device, and evaluated long-duration cell-cell contacts between single HSPCs and stromal cells or endothelial cells in a custom-designed microwell cell-culture system. We found that an HSPC can form a discrete contact site that leads to the extensive polarization of their cytoskeleton architectures. As in the case with immune synapses formed by lymphocytes, the centrosome was located in proximity of the cell-cell contact. The entire microtubule network emanated from the centrosome, and the nucleus was confined to the side opposite of the cell-cell contact. The capacity of the HSPC to polarize appeared specific as it was not observed in contact with skin fibroblasts. The receptors ICAM, VCAM and CXCR4 were identified in the polarizing contact, and were all independently capable of inducing morphological polarization. However, only CXCR4 was independently capable of inducing the polarization of the centrosome-microtubule network. Altogether these results revealed a novel mechanism of HSPC polarization associated with its anchorage to specific cells in the bone-marrow, which might be instrumental in the regulation of their fate.


Biology Open ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. bio052993
Author(s):  
Debabrata Patra ◽  
Joongho Kim ◽  
Qiang Zhang ◽  
Eric Tycksen ◽  
Linda J. Sandell

ABSTRACTSite-1 protease (S1P) ablation in the osterix-lineage in mice drastically reduces bone development and downregulates bone marrow-derived skeletal stem cells. Here we show that these mice also suffer from spina bifida occulta with a characteristic lack of bone fusion in the posterior neural arches. Molecular analysis of bone marrow-derived non-red blood cell cells, via single-cell RNA-Seq and protein mass spectrometry, demonstrate that these mice have a much-altered bone marrow with a significant increase in neutrophils and Ly6C-expressing leukocytes. The molecular composition of bone marrow neutrophils is also different as they express more and additional members of the stefin A (Stfa) family of proteins. In vitro, recombinant Stfa1 and Stfa2 proteins have the ability to drastically inhibit osteogenic differentiation of bone marrow stromal cells, with no effect on adipogenic differentiation. FACS analysis of hematopoietic stem cells show that despite a decrease in hematopoietic stem cells, S1P ablation results in an increased production of granulocyte-macrophage progenitors, the precursors to neutrophils. These observations indicate that S1P has a role in the lineage specification of hematopoietic stem cells and/or their progenitors for development of a normal hematopoietic niche. Our study designates a fundamental requirement of S1P for maintaining a balanced regenerative capacity of the bone marrow niche.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
José Gabriel Barcia Durán ◽  
Tyler Lu ◽  
Sean Houghton ◽  
Fuqiang Geng ◽  
Ryan Schreiner ◽  
...  

AbstractJak3 is the only non-promiscuous member of the Jak family of secondary messengers. Studies to date have focused on understanding and targeting the cell-autonomous role of Jak3 in immunity, while functional Jak3 expression outside the hematopoietic system remains largely unreported. We show that Jak3 is expressed in endothelial cells across hematopoietic and non-hematopoietic organs, with heightened expression in the bone marrow. The bone marrow niche is understood as a network of different cell types that regulate hematopoietic function. We show that the Jak3–/– bone marrow niche is deleterious for the maintenance of long-term repopulating hematopoietic stem cells (LT-HSCs) and that JAK3-overexpressing endothelial cells have increased potential to expand LT-HSCs in vitro. This work may serve to identify a novel function for a highly specific tyrosine kinase in the bone marrow vascular niche and to further characterize the LT-HSC function of sinusoidal endothelium.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3734-3734
Author(s):  
Theresa Hack ◽  
Stefanie Bertram ◽  
Guntram Büsche ◽  
Helmut Hanenberg ◽  
Ludger Klein-Hitpass ◽  
...  

Background: An increasing knowledge about the bone marrow niche demonstrates the high complexity of leukemogenesis. Mesenchymal stromal cells (MSC) are important members of the bone marrow niche and source of fibrosis. Further, the microenvironment seems to be regulated by megakaryocytes and platelets via cytokines, such as transforming growth factor beta 1 (TGFB1). Despite extensive research, the pathogenesis of the bone marrow niche in childhood leukemia and the therapeutic potential is still unclear. We focus on acute childhood megakaryoblastic leukemia (AMKL) as a disease model and include patients with (ML-DS) and without Down syndrome. Based on similar clinical progressions - myelofibrosis occurs as a side-effect of both leukemia subtypes; these two diseases suit to characterize the leukemic bone marrow niche. Methods: We performed a comprehensive characterisation of MSC from ML-DS (n=9), AMKL patients (n=5) and healthy donors (HD; n=6) via e.g. differentiation assays (adipogenic, osteogenic), gene expression profiles and western blot analysis. In addition, we established an in vivo model with humanized ossicles, representing a human bone marrow microenvironment (as described by Chen et al. 2012; Reinisch et al. 2015): We injected MSC mixed with pooled human umbilical vein endothelial cells (HUVEC) and Matrigel subcutaneously into NOD scid gamma (NSG) mice. After 8 weeks, the engrafted ossicles were injected with megakaryoblastic cells (CMK cell line); injected ossicles (n=16); uninjected ossicle (n=27), MSC from ML-DS (n=19 ossicles), AML M1 (n=15 ossicles) and HD (n=9 ossicles). After 4 more weeks, histopathology evaluation of fibrosis in the ossicles was performed in accordance with the European Consensus on Grading Bone Marrow criteria from an independent pathologist. Results: The detailed characterisation of MSC with ML-DS and AMKL demonstrated a high similarity to MSC of HD: morphology, osteogenic differentiation potential, colony forming unit-fibroblast assay, proliferation and gene expression profiles. However, two differences emerged in our analysis: MSC showed a decreased adipogenic differentiation potential in ML-DS and AMKL compared to HD (ML-DS vs. HD=0.26-fold, p<0.05; AMKL vs. HD=0.50-fold). Gene expression profiling identified an upregulation of IGF2BP3, an oncofetal RNA binding protein, in MSC of ML-DS compared to HD confirmed by qRT-PCR (2.6-fold, p<0.05). IGF2BP3 is known to be highly expressed in many cancers and seems to be associated with proliferation. The increased level of IGF2BP3 (protein: IF2B3) was confirmed at protein-level detected by western blot analysis (ML-DS vs HD: 37.3-fold, p<0.05 and AMKL-MSC vs HD: 13.1-fold, p<0.05). TGFB1 - known to be secreted by leukemic megakaryoblasts - induced a fibrotic state in MSC regardless of their origin indicated by decreased adipogenic differentiation potential (treated vs. untreated: ML-DS 0.22-fold; AMKL 0.08-fold; HD 0.06-fold, p<0.05) and increased expression of collagen genes (qRT-PCR; COL1A1: ML-DS=1.63-fold, AMKL=1.80-fold (p<0.01), HD=1.66-fold (p<0.05); COL3A1: ML-DS=1.31-fold, AMKL=1.52-fold (p<0.05), HD=1.24-fold). The humanized bone marrow niche in our mouse model demonstrated a development of myelofibrosis after injection of the megakaryoblastic cell line (CMK): Grade 1 or 2 in 81% of the ossicles. The induction was independent of the MSC entity (HD/ML-DS). Of note, a monocytic subpopulation, which engrafted unexpectedly in ossicle from HD-MSC (n=3 ossicle), did not induce fibrotic fibers. Conclusion: Our data impressively illustrate the mutual influence between MSC and leukemic blasts that leads to a fibrotic microenvironment. This correlation has been observed in vitro but also in a unique mouse model. The interaction of MSC and leukemic blasts seems to be the key factor for the development of the leukemic niche in AMKL mediated inter alia by the TGFB pathway. However, we could identify several disease specific characteristics of MSC. Our model offers a unique opportunity to fundamentally examine of the leukemic niche in order to subsequently evaluate the potential therapeutic use in further studies. Disclosures Reinhardt: Novartis: Other: Participation in Advisory Boards; CSL Behring: Research Funding; Jazz: Other: Participation in Advisory Boards, Research Funding; Roche: Research Funding.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Fulvio Massaro ◽  
Florent Corrillon ◽  
Basile Stamatopoulos ◽  
Nathalie Meuleman ◽  
Laurence Lagneaux ◽  
...  

Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.


Sign in / Sign up

Export Citation Format

Share Document