scholarly journals Investigations of Thermal Damage on the Physical and Mechanical Properties of Gneiss Rock Specimen

Author(s):  
Luc Leroy NM
2021 ◽  
pp. 1-10
Author(s):  
Menglin Du ◽  
Feng Gao ◽  
Chengzheng Cai ◽  
Shanjie Su ◽  
Zekai Wang

Abstract Exploring the damage differences between different coal rank coal reservoirs subjected to liquid nitrogen (LN2) cooling is of great significance to the rational development and efficient utilization of coalbed methane. For this purpose, the mechanical properties, acoustic emission (AE) characteristics and energy evolution law of lignite and bituminous coal subjected to LN2 cooling were investigated based on the Brazilian splitting tests. Then, pore structure changes were analyzed to reveal the difference in the microscopic damage between lignite and bituminous coal after LN2 cooling. The results showed that compared with bituminous coal, the pore structure of lignite coal changed more obviously, which was manifested as follows: significant increases in porosity, pore diameters, and pore area; a larger transformation from micropores and transition pores to mesopores and macropores. After LN2 cooling, the thermal damage inside lignite and bituminous coal was 0.412 and 0.069, respectively. The thermal damage reduced the cohesive force between mineral particles, leading to the deterioration of the macroscopic physical and mechanical properties. Simultaneously, denser AE ringing counts and larger accumulated ringing counts were observed after LN2 cooling. Moreover, the random distribution of thermal damage enhanced the randomness of the macrocrack propagation direction, resulting in an increase in the crack path tortuosity. With more initial defects inside coal, a more obvious thermal damage degree and wider damage distribution will be induced by LN2 cooling, leading to more complicated crack formation paths and a higher fragmentation degree, such as that of lignite coal.


2019 ◽  
Vol 38 (2019) ◽  
pp. 849-855
Author(s):  
Chenchen Xu ◽  
Qiang Sun ◽  
Xiaohua Pan ◽  
Weiqiang Zhang ◽  
Yanbing Wang

AbstractTemperature significantly affects the physical and mechanical properties of granite. To have a comprehensive understanding of the thermal cycle effect on uniaxial compressive strength (UCS) and thermal damage rate, a series of thermal cycle experiments on granite specimens were carried out with five types of designed temperatures and five types of cycle number of thermal treatments. The experimental results indicate that UCS decreases and thermal damage rate increases as temperature and thermal cycle increase. UCS of specimens cooled in water condition after thermal damage treatment are lower than those cooled in air condition. In addition, two new phenomena related to thermal damage rate were observed. Firstly, previous studies have shown that a rapid value reduction of UCS of specimens with one thermal cycle treatment under air cooling condition can be observed at 400∘C. While the temperature threshold for the specimens treated with more than one thermal cycle under water cooling condition increases to 550∘C. Secondly, a thoroughly antipodal evolution law of the thermal damage rate for the specimens with multiple thermal cycle treatments is also observed as compared to those treated by only one thermal cycle. These differences might be induced by the different microcrack initial time and their development speed. The new findings are important to understand the failure mechanism and variation process of physical and mechanical properties of granite specimens subjected to thermal cycles.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2016 ◽  
Vol 13 (2) ◽  
pp. 67
Author(s):  
Engku Liyana Zafirah Engku Mohd Suhaimi ◽  
Jamil Salleh ◽  
Suzaini Abd Ghani ◽  
Mohamad Faizul Yahya ◽  
Mohd Rozi Ahmad

An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testings and three (3) mechanical testings conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


Author(s):  
Thais Helena Sydenstricker Flores-Sahagun ◽  
Kelly Priscila Agapito ◽  
ROSA MARIA JIMENEZ AMEZCUA ◽  
Felipe Jedyn

Sign in / Sign up

Export Citation Format

Share Document