scholarly journals Variation on thermal damage rate of granite specimen with thermal cycle treatment

2019 ◽  
Vol 38 (2019) ◽  
pp. 849-855
Author(s):  
Chenchen Xu ◽  
Qiang Sun ◽  
Xiaohua Pan ◽  
Weiqiang Zhang ◽  
Yanbing Wang

AbstractTemperature significantly affects the physical and mechanical properties of granite. To have a comprehensive understanding of the thermal cycle effect on uniaxial compressive strength (UCS) and thermal damage rate, a series of thermal cycle experiments on granite specimens were carried out with five types of designed temperatures and five types of cycle number of thermal treatments. The experimental results indicate that UCS decreases and thermal damage rate increases as temperature and thermal cycle increase. UCS of specimens cooled in water condition after thermal damage treatment are lower than those cooled in air condition. In addition, two new phenomena related to thermal damage rate were observed. Firstly, previous studies have shown that a rapid value reduction of UCS of specimens with one thermal cycle treatment under air cooling condition can be observed at 400∘C. While the temperature threshold for the specimens treated with more than one thermal cycle under water cooling condition increases to 550∘C. Secondly, a thoroughly antipodal evolution law of the thermal damage rate for the specimens with multiple thermal cycle treatments is also observed as compared to those treated by only one thermal cycle. These differences might be induced by the different microcrack initial time and their development speed. The new findings are important to understand the failure mechanism and variation process of physical and mechanical properties of granite specimens subjected to thermal cycles.

2021 ◽  
pp. 1-10
Author(s):  
Menglin Du ◽  
Feng Gao ◽  
Chengzheng Cai ◽  
Shanjie Su ◽  
Zekai Wang

Abstract Exploring the damage differences between different coal rank coal reservoirs subjected to liquid nitrogen (LN2) cooling is of great significance to the rational development and efficient utilization of coalbed methane. For this purpose, the mechanical properties, acoustic emission (AE) characteristics and energy evolution law of lignite and bituminous coal subjected to LN2 cooling were investigated based on the Brazilian splitting tests. Then, pore structure changes were analyzed to reveal the difference in the microscopic damage between lignite and bituminous coal after LN2 cooling. The results showed that compared with bituminous coal, the pore structure of lignite coal changed more obviously, which was manifested as follows: significant increases in porosity, pore diameters, and pore area; a larger transformation from micropores and transition pores to mesopores and macropores. After LN2 cooling, the thermal damage inside lignite and bituminous coal was 0.412 and 0.069, respectively. The thermal damage reduced the cohesive force between mineral particles, leading to the deterioration of the macroscopic physical and mechanical properties. Simultaneously, denser AE ringing counts and larger accumulated ringing counts were observed after LN2 cooling. Moreover, the random distribution of thermal damage enhanced the randomness of the macrocrack propagation direction, resulting in an increase in the crack path tortuosity. With more initial defects inside coal, a more obvious thermal damage degree and wider damage distribution will be induced by LN2 cooling, leading to more complicated crack formation paths and a higher fragmentation degree, such as that of lignite coal.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1299
Author(s):  
Dong Pan ◽  
Yuguang Zhao ◽  
Yitong Wang ◽  
Xiaofeng Xu ◽  
Xueying Chong

The ductility of cobalt-free maraging steel is unsatisfactory because of the high content of Ti. Traditional heat treatment can not effectively improve the ductility of this kind steel. In this contribution, high-energy electro-pulsing is adopted in a T250 steel to solve this problem efficiently. It is found that the EPS treatment (electro-pulsing treatment under water-cooling condition) can accelerate the formation of retained austenite and nano stacking faults. Meanwhile, the microstructure is also refined by EPS treatment. Then, taking the EPS sample as the initial state, nano-reverted austenite combined with finer η-Ni3Ti precipitates are formed during EPA treatment (electro-pulsing treatment under air-cooling condition), compared with TA (traditional aging) treatment. The results of mechanical properties indicate that the strength and elongation are both enhanced by electro-pulsing treatment. Consequently, the electro-pulsing treatment can be a promising technology to devise cobalt-free maraging steel with better properties.


Author(s):  
O. A. Petrova-Burkina ◽  
V. V. Rubanik, Jr. ◽  
V. V. Rubanik ◽  
T. V. Gamzeleva

The effect of duration and annealing temperature in the range of 400–800 °C on the thermokinetic EMF value in titanium nickelide, the composition of which is close to the equi-atomic one, at a reverse phase transition was investigated. Thermokinetic EMF was measured directly using a digital millivoltmeter MNIPI V7-72. The phase and elemental composition of the alloy and the kinetics of thermoelastic phase transformations have been checked by X-ray diffraction and calorimetric studies, and X-ray microanalysis. Annealing at temperatures of 500 and 800 °C leads to an increase in the thermokinetic EMF value from 0.22 to 0.25 mV. Removal of the oxide layer from the sample surface annealed at 700 °C for 0.5 h leads to an increase in the thermokinetic EMF value from 0.22 to 0.26 mV for the 1-st thermal cycle. It was found that thermal cycling causes a decrease in the thermokinetic EMF values down to 0.98 mV for the 20th thermal cycle for the samples without an oxide layer and to 0.3 mV for the samples with an oxide layer, respectively. With the increase in annealing time up to 20 h at 700 °C, the decrease in the thermokinetic emf value to 0.16 mV was observed. The thermokinetic EMF value after heat treatment is associated with changes in the physical and mechanical properties of the alloy and characterized by a shift of the characteristic temperatures of the phase transition. The research results are important for understanding the physics of thermoelectric phenomena in shape memory alloys during nonstationary heating and can be used both to control the homogeneity of their physical and mechanical properties and to design smart actuators and sensors, mechanisms of control systems.


Author(s):  
Michael M. Kersker ◽  
E. A. Aigeltinger ◽  
J. J. IIren

Ni-rich alloys based on approximate ternary composition Ni-8Mo-15A1 (at%) are presently under investigation in an attempt to study the contribution, if any, of the profusion of Mo-rich NixMo metastable compounds that these alloys contain to their excellent mechanical properties. One of the alloys containing metastable NixMo precipitates is RSR 197 of composition Ni-8.96Mo-15.06A1-1.98Ta-.015Yt. The alloy was prepared at Pratt and Whitney Government Products Division, West Palm Beach, Florida, from rapidly solidified powder. The powder was canned under inert conditions and extruded as rod at 1315°C. The as-extruded rod, after air cooling, was solution treated at 1315°C for two hours, air cooled, and heat treated for one hour at 815°C, followed again by air cooling.


Sign in / Sign up

Export Citation Format

Share Document