Degradation of Textile Dye by UV Light Using Nano Zno/Bamboo Charcoal Photocatalysts

Author(s):  
Ming Shien Yen Mu Cheng Kuo
1999 ◽  
Vol 40 (1) ◽  
pp. 183-190 ◽  
Author(s):  
N. H. Ince ◽  
G. Tezcanlı

Treatability of textile dye-bath effluents by advanced oxidation with Fenton and Fenton-like reagents (FeII/H2O2 and FeIII/H2O2), in the presence and absence of UV light was investigated, using a reactive azo-dye (Procion Red HE7B), and typical dye bath constituents. Under the experimental conditions employed, it was found that with 20 min UV irradiation, complete color removal and 79% total organic carbon degradation is possible, when the system is operated at pH=3, and with a H2O2/Fe(II) molar ratio of 20:1. The increased dissolved solids content of the treated solution implies the necessity of an appropriate membrane system to make the effluent reusable in the dye/wash processes.


2019 ◽  
Vol 8 (1) ◽  
pp. 895-900 ◽  
Author(s):  
Santhanam Mohan ◽  
Manickam Vishnu Devan

Abstract The photocatalysis of Ag/Ni bi-metallic nano-particles on safranin O dye degradation was evaluated by UV light irradiations. Ag/Ni bi-metallic nanoparticles were synthesized by the green approach using Zingiber officinale root (Zinger) extract. The average particles size of Ag/Ni bi-metallic nanoparticles was found to be 70-88 nm from SEM image and from XRD patterns it was confirmed that the existence of Ag/Ni bi-metallic nano-particles. 8 mg of Ag/Ni bi-metallic nanoparticles present in 40 mL of 10 ppm dye, degraded completely in presence of UV light irradiations within 30 min time durations. The effect of dye degradation within a short period of time (30 min) was due to wide band gap energy and photochemical redox reactions.


2019 ◽  
Vol 5 (1) ◽  
pp. 580-583 ◽  
Author(s):  
Vijaya P. Dhawale . ◽  
Datta J. Late . ◽  
Satish D. Kulkarni .

Present study deals with the sol-gel synthesis and application of α-Al2O3 nanoparticles (alumina) to decolorize the azo anionic dye methyl orange (MO). α-Al2O3 nanoparticles were successfully synthesized using aluminium oxide, 25% ammonia and polyvinyl alcohol (PVA) were used as low cost raw materials. The properties of synthesized nanoparticles were investigated by using UV-visible spectroscopy, XRD, FTIR, SEM, EDAX, Raman spectroscopy and TEM. From UV–visible spectra, band gap was calculated and it was found to be 3.31 eV. Average crystal size of α-Al2O3 nanoparticles from XRD peaks found to be 25 nm having rhombohedral structure. FTIR spectra reveals that functional groups (O-Al-O) are present. SEM image shows distribution pattern of α-Al2O3 nanoparticles. Chemical composition of α-Al2O3 nanoparticles was confirmed from EDAX spectroscopy measurement. Raman spectra showed crystalline nature of α-Al2O3 nanoparticles. The effect of concentration and pH of dye, dosage of nano adsorbent and contact time were studied. The systematic study shows that, successful color removal of methyl orange dye up to 54% in three hours contact time of pH 4. Hence α-Al2O3 nanoparticles can be used for dye removal from waste water. Industrialization of this technique will be cost effective way to decolorize the textile dye present in water system.


2020 ◽  
Vol 82 (5) ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Andri Cahyo Kumoro ◽  
Muhammad Ainul Yaqin ◽  
Nurul Fatiyah ◽  
Dani Puji Utomo

The purification of biodiesel is one of the crucial processes involved in biodiesel production. This study aims to examine the effect of the polymer composition, nano-ZnO loading, and UV irradiation on the performance of membranes for biodiesel purification. The membranes were fabricated with the polyethersulfone composition of 17, 18, and 20 wt%. The compositions of nano ZnO were varied at 1.5, 2, and 2.5 wt%, while the duration of UV irradiation was varied for 0.5, 1, and 1.5 minutes. The results indicate that the compositions of PES, nano ZnO, and UV irradiation affected the performance of the membrane. The best membrane performance was achieved when the membrane was produced using PES 17 wt%, nano ZnO 1.5 wt% involving irradiation UV light for 1 minute. The fabricated membrane exhibits 3 hours flux profile stability and 61.5% glycerol rejection.


2014 ◽  
Vol 70 (10) ◽  
pp. 1670-1676 ◽  
Author(s):  
Maurício da Motta ◽  
Raquel Pereira ◽  
M. Madalena Alves ◽  
Luciana Pereira

Textile dye wastewaters are characterized by strong colour, salts and other additives, high pH, temperature, chemical oxygen demand (COD) and biodegradable materials. Being aesthetically and environmentally unacceptable, these wastewaters need to be treated before their discharge. Anaerobic bioprocesses have been proposed as being environmentally friendly and relatively cheap; however, when applied to real effluent with a complex composition, they can fail. In this study, a photoreactor combining UV light and TiO2, immobilized in cellulosic fabric, was applied for the treatment of two industrial textile wastewaters. High colour and COD removal, and detoxification, were achieved for both wastewaters, at controlled pH of 5.5. Effluents showed very poor biodegradability due to their complex composition; thus, the proposed process is an efficient alternative.


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660012 ◽  
Author(s):  
Thurlapathi VL Thejaswini ◽  
Deivasigamani Prabhakaran

The present work deals with the synthesis of bi-continuous macro and mesoporous crack-free titania–silica monoliths, with well-defined structural dimensions and high surface area. The work also highlights their potential photocatalytic environmental applications. The highly ordered titania–silica monoliths are synthesized through direct surface template method using organic precursors of silica and titania in the presence of surface directing agents such as pluronic P123 and PEG, under acetic acid medium. The monoliths are synthesized with different Ti/Si ratios to obtain monolithic designs that exhibit better photocatalytic activity for dye degradation. The titania–silica monoliths are characterized using XRD, SEM, EDAX, FT-IR, TG–DTA and BET analysis. The photocatalytic activity of the synthesized monoliths is tested on the photodegradation of a textile dye (acid blue 113). It is observed that the monolith with 7:3 ratio of Ti/Si showed significant photocatalysis behavior in the presence of UV light. The influence of various physico-chemical properties such as, solution pH, photocatalyst dosage, light intensity, dye concentration, effect of oxidants, etc. are analyzed and optimized using a customized photoreactor set-up. Under optimized conditions, the monoliths exhibited superior degradation kinetics, with the dye dissipation complete within 10[Formula: see text]min of photolysis. The mesoporous catalysts are recoverable and reusable up to four cycles of repeated usage.


2010 ◽  
Vol 16 (3) ◽  
pp. 225-232 ◽  
Author(s):  
X.H. Li ◽  
Y.G. Xing ◽  
W.L. Li ◽  
Y.H. Jiang ◽  
Y.L. Ding

Nanoparticles of ZnO and their application in coating systems have attracted a great deal of attention in recent years because of its multifunction property, especially antibacterial activity. In this study, antibacterial and physical properties of poly(vinyl chloride) (PVC) based film coated with ZnO nanoparticles were investigated. It was found that the antibacterial action should be attributed to the killing effect property of ZnO nanoparticles. The ZnO-coated films treated by shaking for 10 h exhibited a similar high antibacterial activity against Escherichia coli and Staphylococcus aureus as the untreated ZnO-coated films. This result indicated that the ZnO nanoparticles adhered very well to the plastic film. The antibacterial activity of the ZnO-coated film to inactivate E. coli or S. aureus was improved by UV irradiation. The analysis of physical properties of the ZnO-coated films revealed that the nano-ZnO particles showed less effects on the tensile strength and elongation at break of the film. The ultraviolet (UV) light fastness of the ZnO-coated PVC film was improved, which may be attributed to the absorption of ZnO nanoparticles against UV light. Water vapor transmission of the ZnO-coated film decreased from 128 to 85 g/m 2 · 24 h, whereas the thickness of film increased from 6.0 μm with increasing the amount of nano-ZnO particles coated from 0 to 187.5 μg/cm 2. This research revealed that the PVC film coated with nano-ZnO particles has a good potential to be used as an active coating system for food packaging.


2017 ◽  
Vol 9 (4) ◽  
pp. 413-420
Author(s):  
S. Akhtar ◽  
M. A. Alam ◽  
H. Ahmad

In this research we focused on to develop new nanocomposite materials that have capacity to de-colorize and degrade industrial effluent. At first NiO nanoparticle were synthesized by simple liquid phase process using Ni(NO3)2.6H2O and NH4OH followed by calcinations of the produced Ni(OH)2 as precursor at 400°C. NiO nanoparticles were modified to produce NiO/SiO2 nanocomposite particles. Finally tri-layered inorganic/organic nanocomposite particles were prepared by seeded polymerization of epoxide functional monomer, glycidyl methacrylate (GMA) in presence of NiO/SiO2 nanocomposite seed particles. The composite particles were named as NiO/SiO2/PGMA and the obtained particles were utilized as a photocatalyst for the UV-light assisted degradation of congo red (CR), a model azo dye. Degradation efficiency decreased with the increase of initial CR concentration and a maximum efficiency of 100% was achieved when the CR concentration was 40 mg/L.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
Yunlong ZHOU ◽  
Zhibiao HU ◽  
Manxia TONG ◽  
Qiaoling ZHANG ◽  
Changqing TONG

Sign in / Sign up

Export Citation Format

Share Document