scholarly journals The Accounting of the Transverse Slides for the Layered Composites

2018 ◽  
Vol 04 (02) ◽  
Author(s):  
Daryadar M
Keyword(s):  
2020 ◽  
Vol 86 (2) ◽  
pp. 44-53
Author(s):  
Yu. I. Dudarkov ◽  
M. V. Limonin

An engineering approach to estimation of the transverse shear stresses in layered composites is developed. The technique is based on the well-known D. I. Zhuravsky equation for shear stresses in an isotropic beam upon transverse bending. In general, application of this equation to a composite beam is incorrect due to the heterogeneity of the composite structure. According to the proposed method, at the first stage of its implementation, a transition to the equivalent model of a homogeneous beam is made, for which the Zhuravsky formula is valid. The transition is carried out by changing the shape of the cross section of the beam, provided that the bending stiffness and generalized elastic modulus remain the same. The calculated shear stresses in the equivalent beam are then converted to the stress values in the original composite beam from the equilibrium condition. The main equations and definitions of the method as well as the analytical equation for estimation of the transverse shear stress in a composite beam are presented. The method is verified by comparing the analytical solution and the results of the numerical solution of the problem by finite element method (FEM). It is shown that laminate stacking sequence has a significant impact both on the character and on the value of the transverse shear stress distribution. The limits of the applicability of the developed technique attributed to the conditions of the validity of the hypothesis of straight normal are considered. It is noted that under this hypothesis the shear stresses do not depend on the layer shear modulus, which explains the absence of this parameter in the obtained equation. The classical theory of laminate composites is based on the similar assumptions, which gives ground to use this equation for an approximate estimation of the transverse shear stresses in in a layered composite package.


2021 ◽  
Vol 547 ◽  
pp. 152778
Author(s):  
Shiddartha Paul ◽  
Daniel Schwen ◽  
Michael P. Short ◽  
Kasra Momeni
Keyword(s):  

APL Materials ◽  
2013 ◽  
Vol 1 (3) ◽  
pp. 032112 ◽  
Author(s):  
Irene J. Beyerlein ◽  
Jian Wang ◽  
Ruifeng Zhang
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2916
Author(s):  
Ondrej Hanzel ◽  
Zoltán Lenčéš ◽  
Peter Tatarko ◽  
Richard Sedlák ◽  
Ivo Dlouhý ◽  
...  

Three and five-layered silicon carbide-based composites containing 0, 5, and 15 wt.% of graphene nanoplatelets (GNPs) were prepared with the aim to obtain a sufficiently high electrical conductivity in the surface layer suitable for electric discharge machining (EDM). The layer sequence in the asymmetric three-layered composites was SiC/SiC-5GNPs/SiC-15GNPs, while in the symmetric five-layered composite, the order of layers was SiC-15GNPs/SiC-5GNPs/SiC/SiC-5GNPs/SiC-15GNPs. The layered samples were prepared by rapid hot-pressing (RHP) applying various pressures, and it was shown that for the preparation of dense 3- or 5-layered SiC/GNPs composites, at least 30 MPa of the applied load was required during sintering. The electrical conductivity of 3-layered and 5-layered composites increased significantly with increasing sintering pressure when measured on the SiC surface layer containing 15 wt.% of GNPs. The increasing GNPs content had a positive influence on the electrical conductivity of individual layers, while their instrumented hardness and elastic modulus decreased. The scratch tests confirmed that the materials consisted of well-defined layers with straight interfaces without any delamination, which suggests good adhesion between the individual layers.


1994 ◽  
Vol 28 (9) ◽  
pp. 837-870 ◽  
Author(s):  
Yu Xie Mukherjee ◽  
Sunil N. Gulrajani ◽  
Subrata Mukherjee ◽  
Anil N. Netravali

Sign in / Sign up

Export Citation Format

Share Document