Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics

2009 ◽  
Vol 46 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Su-Ho Chae ◽  
Young-Wook Kim ◽  
In-Hyuek Song ◽  
Hai-Doo Kim ◽  
Ji-Soo Bae
2008 ◽  
Vol 45 (9) ◽  
pp. 537-543 ◽  
Author(s):  
Su-Ho Chae ◽  
Young-Wook Kim ◽  
In-Hyuek Song ◽  
Hai-Doo Kim ◽  
Ji-Soo Bae

Author(s):  
W. M. Kriven

Significant progress towards a fundamental understanding of transformation toughening in composite zirconia ceramics was made possible by the application of a TEM contrast analysis technique for imaging elastic strains. Spherical zirconia particles dispersed in a large-grained alumina matrix were examined by 1 MeV HVEM to simulate bulk conditions. A thermal contraction mismatch arose on cooling from the processing temperature of 1500°C to RT. Tetragonal ZrO2 contracted amisotropically with α(ct) = 16 X 10-6/°C and α(at) = 11 X 10-6/°C and faster than Al2O3 which contracted relatively isotropically at α = 8 X 10-6/°C. A volume increase of +4.9% accompanied the transformation to monoclinic symmetry at room temperature. The elastic strain field surrounding a particle before transformation was 3-dimensionally correlated with the internal crystallographic orientation of the particle and with the strain field after transformation. The aim of this paper is to theoretically and experimentally describe this technique using the ZrO2 as an example and thereby to illustrate the experimental requirements Tor such an analysis in other systems.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-237-C1-241
Author(s):  
A. SMITH ◽  
B. CALES ◽  
J. F. BAUMARD

2020 ◽  
Author(s):  
Devi Lal ◽  
Praveen Kumar ◽  
Sanjay Sampath ◽  
Vikram Jayaram

2020 ◽  
Vol 62 (1) ◽  
pp. 84-88
Author(s):  
Xiuju Liu ◽  
Xue Jiang ◽  
Tong Xu ◽  
Qi Zhao ◽  
Song Zhu

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3370
Author(s):  
Emmanouil-George C. Tzanakakis ◽  
Evangelos Skoulas ◽  
Eudoxie Pepelassi ◽  
Petros Koidis ◽  
Ioannis G. Tzoutzas

Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.


1992 ◽  
Vol 27 (16) ◽  
pp. 4429-4438 ◽  
Author(s):  
G. S. A. M. Theunissen ◽  
J. S. Bouma ◽  
A. J. A. Winnubst ◽  
A. J. Burggraaf

Sign in / Sign up

Export Citation Format

Share Document