scholarly journals The Use of Lasers in Dental Materials: A Review

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3370
Author(s):  
Emmanouil-George C. Tzanakakis ◽  
Evangelos Skoulas ◽  
Eudoxie Pepelassi ◽  
Petros Koidis ◽  
Ioannis G. Tzoutzas

Lasers have been well integrated in clinical dentistry for the last two decades, providing clinical alternatives in the management of both soft and hard tissues with an expanding use in the field of dental materials. One of their main advantages is that they can deliver very low to very high concentrated power at an exact point on any substrate by all possible means. The aim of this review is to thoroughly analyze the use of lasers in the processing of dental materials and to enlighten the new trends in laser technology focused on dental material management. New approaches for the elaboration of dental materials that require high energy levels and delicate processing, such as metals, ceramics, and resins are provided, while time consuming laboratory procedures, such as cutting restorative materials, welding, and sintering are facilitated. In addition, surface characteristics of titanium alloys and high strength ceramics can be altered. Finally, the potential of lasers to increase the adhesion of zirconia ceramics to different substrates has been tested for all laser devices, including a new ultrafast generation of lasers.

2009 ◽  
Vol 404 ◽  
pp. 69-75
Author(s):  
H. Kasuga ◽  
Hitoshi Ohmori ◽  
Y. Watanabe ◽  
T. Mishima

Progress of new dental materials such as biocompatible metal, ceramics is being accelerated because of aging society and sophistication of medical treatment. In addition, the demand for dental implant treatment is increasing. Currently, dental implant crowns (superstructures) are formed by cutting semi-sintered ceramics and then sintering the ceramics at a high temperature. So, there is some concern that to maintain the form accuracy of the workpiece is difficult. Meanwhile, it is usually difficult to machine sintered ceramics with high precision and high efficiency. In this paper, we tried to apply grinding with metal bonded superabrasive wheels, and investigated the grinding and surface characteristics of an alumina and zirconia ceramics for dental implant superstructure due to lack of such data. As a result of experiments, sintered dental ceramics can be ground with high precision and Fe, it has harmful effect to human body, was not detected in sintered dental ceramics.


Author(s):  
Жанна Владимировна Вечеркина ◽  
Наталия Владимировна Чиркова ◽  
Михаил Анатольевич Крючков ◽  
Виктор Сергеевич Калиниченко

Развитие технологий, основанных на использовании низкотоксичных материалов, позволит в скором будущем начать их применение в медицине. Применение наночастиц серебра, меди, кремния, цинка, титана, кобальта в качестве модифицирующей добавки позволит оказать активное влияние на структуру исходных материалов и изменение их свойств, а именно улучшение физико-механических, физико-химических и токсико-гигиенических свойств материалов. Наноразмерные частицы кремния, введенные в фиксирующие стоматологические материалы, приводят к улучшению физико-химических, физико-механических свойств кристаллизующихся материалов, а малая теплопроводность кремния может увеличить его рабочее время и снизить выделение тепла при реакции кристаллизации. Так как от этих характеристик зависит объем манипуляций, при фиксации ортопедических конструкций на опорных зубах целесообразно было бы привести рабочее время твердения к чистому времени твердения, что позволит увеличить объем манипуляций приготовленной массой без ухудшения ее свойств. Разработка высокопрочных, биосовместимых, высокотехнологичных нанопластмасс для базисов съемных пластиночных протезов является актуальной проблемой повышения качества жизни пациентов. Модификация наноразмерными частицами серебра, кремния акрилового полимера позволит улучшить такие физико-механические свойства, как ударную вязкость, прочность, температуростойкость, барьерные свойства, уменьшить усадку полимера на этапе полимеризации, в отличие от уже известных отечественных и дорогостоящих импортных полимеров. Наноразмерные частицы кремния, серебра являются сокатализаторами метилметакрилата, влияющими на уменьшение количества остаточного мономера после процесса полимеризации, тем самым повышая санитарно-химические и токсико-гигиенические характеристики полимера. Все вышеизложенное позволило сформулировать цель исследований по наноструктурированным материалам под руководством профессора …посвящается памяти профессора, д.м.н. Каливраджияна Э.С. The development of technologies based on the use of low-toxic materials will make it possible to begin their application in medicine in the near future. The use of nanoparticles of silver, copper, silicon, zinc, titanium, cobalt as a modifying additive will make it possible to actively influence the structure of the starting materials and change their properties, namely, improve the physicomechanical, physicochemical and toxicohygienic properties of materials. Nanosized silicon particles introduced into fixing dental materials lead to an improvement in the physicochemical, physicomechanical properties of crystallizing materials, and the low thermal conductivity of silicon can increase its working time and reduce heat generation during the crystallization reaction. Since the volume of manipulations depends on these characteristics, when fixing orthopedic structures on abutment teeth, it would be advisable to bring the working time of hardening to a pure hardening time, which will increase the volume of manipulations with the prepared mass without deteriorating its properties. The development of high-strength, biocompatible, high-tech nanoplastics for the bases of removable plate prostheses is an urgent problem to improve the quality of life of patients. Modification of acrylic polymer with nano-sized particles of silver and silicon will improve such physical and mechanical properties as impact strength, strength, temperature resistance, barrier properties, and reduce polymer shrinkage at the stage of polymerization, in contrast to the already known domestic and expensive imported polymers. Nanosized particles of silicon, silver are cocatalysts of methyl methacrylate, affecting the reduction of the amount of residual monomer after the polymerization process, thereby increasing the sanitary-chemical and toxic-hygienic characteristics of the polymer. All of the above made it possible to formulate the goal of research on nanostructured materials under the guidance of the professor …dedicated to the memory of the professor, d.m.s. Kalivrajiyan E.S.


2012 ◽  
Vol 727-728 ◽  
pp. 1387-1392 ◽  
Author(s):  
Luan M. Medeiros ◽  
Fernando S. Silva ◽  
Juliana Marchi ◽  
Walter Kenji Yoshito ◽  
Dolores Ribeiro Ricci Lazar ◽  
...  

Zirconium dioxide (zirconia) ceramics are known by its high strength and toughness and titanium dioxide (titania) ceramics has outstanding surface properties. The ceramic composite formed between the two oxides are expected to have advantages of both ceramics, especially when its surface area is increased by pores. In this work, ceramic composites of ZrO2-Y2O3-TiO2were synthesized by coprecipitation and rice starch was added as pore former in 10, 20 and 30 wt%. Powders were cold pressed as cylindrical pellets and sintered at 1500 °C for 01 hour and ceramics were characterized by techniques as Archimedes method for density measurements, X-ray diffraction and scanning electron microscopy. Results showed that pores are inhomogeneously distributed through ceramic bodies.


2008 ◽  
Vol 5 (2) ◽  
pp. 159-164
Author(s):  
Li Bo ◽  
Zhang He ◽  
Zhang Jing ◽  
Sun Bo-Xing ◽  
Chen Lu ◽  
...  

AbstractNine prepubertal gilts (JunMu No. 1) were randomly allocated into three groups (n=3) and fed with a high-energy diet (Group H), a low-energy diet (Group L), or a moderate-energy diet (Group M) for 14 days. Free access to water was provided throughout the research period. Ovaries and uteri were collected after the energy treatments, and processed for determination of the absolute quantities of insulin-like growth factor receptor (IGF-1R) and epidermal growth factor receptor (EGFR) mRNA, using real-time polymerase chain reaction (PCR). The expression of IGF-1R and EGFR mRNA in ovaries and uteri was significantly ranked as: Group H>Group M>Group L (P<0.05). This result suggests that high energy intake markedly enhanced the ovarian and uterine expression of IGF-1R and EGFR in prepubertal gilts, whereas insufficient energy intake markedly inhibited such expression. IGF-1R and EGFR may be involved in mediating the effects of energy intake on the development of the reproductive system in prepubertal gilts.


2013 ◽  
Vol 554-557 ◽  
pp. 264-273 ◽  
Author(s):  
Stanislav Dedov ◽  
Gunter Lehmann ◽  
Rudolf Kawalla

Due to the constant development in the automotive industry, where high performance shared with the maximal comfort and safety at low car body weight are the primary goals, gains the lightweight construction in importance. Materials with light weight, high strength and toughness are being engaged. With this background the material aluminum and its alloys become highly attractive to manufacturers. There are mainly two ways of forming the metal materials: casting or forming. Apart from substitution of one method by another there are also many examples of combining of casting and forging processes in practice. Such approach allows using the advantages of both methods, shortening the process chains and saving energy and resources at the same time. Furthermore the form flexibility can be increased and the product quality can be improved. For higher process efficiency a direct transition from casting to forging operation should be applied, so that the heat loss decreases and no additional heat treatment between these operations is necessary. There are processes known, which allow producing the final parts by casting and forging from one a single heat. The application of such processes requires materials, which have simultaneously good casting and forging properties. The Institute of Metal forming TU Freiberg works intensively on development of combined casting-forging technologies for lightweight aluminum parts. A technological chain for this coupled process followed by precipitation hardening heat treatment was developed (Figure 1). Heat treatable aluminum cast and wrought alloys with 1 – 7 % silicon were applied. By the variation of silicon content the optimal cast, forging and hardening properties were achieved. This technology with high energy efficiency allows producing durable light weight parts from aluminum alloys while the mechanical properties of the final parts are equal to or even higher than those in the conventional processes.


Author(s):  
Yevheniia Velihina ◽  
Nataliya Obernikhina ◽  
Stepan Pilyo ◽  
Maryna Kachaeva ◽  
Oleksiy Kachkovsky ◽  
...  

The binding affinity of model aromatic amino acids and heterocycles and their derivatives condensed with pyridine were investigated in silico and are presented in the framework of fragment-to-fragment approach. The presented model describes interaction between pharmacophores and biomolecules. Scrupulous data analysis shows that expansion of the π-electron system by heterocycles annelation causes the shifting up of high energy levels, while the appearance of new the dicoordinated nitrogen atom is accompanied by decreasing of the donor-acceptor properties. Density Functional Theory (DFT) wB97XD/6-31(d,p)/calculations of π-complexes of the heterocycles 1-3 with model fragments of aromatic amino acids, which were formed by π-stack interaction, show an increase in the stabilization energy of π-complexes during the moving from phenylalanine to tryptophan. DFT calculation of pharmacophore complexes with model proton-donor amino acid by the hydrogen bonding mechanism (H-B complex) shows that stabilization energy (DE) increases from monoheterocycles to their condensed derivatives. The expansion of the π-electron system by introducing phenyl radicals to the oxazole cycle as reported earlier [18] leads to a decrease in the stabilization energy of the [Pharm-BioM] complexes in comparison with the annelated oxazole by the pyridine cycle.


1996 ◽  
Vol 271 (5) ◽  
pp. R1403-R1414 ◽  
Author(s):  
H. O. Portner ◽  
E. Finke ◽  
P. G. Lee

Squid (Lolliguncula brevis) were exercised at increasing swimming speeds to allow us to analyze the correlated changes in intracellular metabolic, acid-base, and energy status of the mantle musculature. Beyond a critical swimming velocity of 1.5 mantle lengths/s, an intracellular acidosis developed that was caused by an initial base loss from the cells, the onset of respiratory acidification, and, predominantly, octopine formation. The acidosis was correlated with decreasing levels of phospho-L-arginine and, thus, supported ATP buffering at the expense of the phosphagen. Monohydrogenphosphate, the actual substrate of glycogen phosphorylase accumulated, enabling glycogen degradation, despite progressive acidosis. In addition to octopine, succinate, and glycerophosphate accumulation, the onset of acidosis characterizes the critical velocity and indicates the transition to a non-steady-state time-limited situation. Accordingly, swimming above the critical velocity caused cellular energy levels (in vivo Gibbs free energy change of ATP hydrolysis) to fall. A minimal value was reached at about -45 kJ/mol. Model calculations demonstrate that changes in free Mg2+ levels only minimally affect ATP free energy, but minimum levels are relevant in maintaining functional concentrations of Mg(2+)-complexed adenylates. Model calculations also reveal that phosphagen breakdown enabled L. brevis to reach swimming speeds about three times higher than the critical velocity. Comparison of two offshore squid species (Loligo pealei and Illex illecebrosus) with the estuarine squid L.brevis indicates that the latter uses a strategy to delay the exploitation of high-energy phosphates and protect energy levels at higher than the minimum levels (-42 kJ/mol) characterizing fatigue in the other species. A more economical use of anaerobic resources and an early reduction in performance may enable L. brevis to tolerate more extreme environmental conditions in shallow estuarine waters and even hypoxic environments and to prevent a fatal depletion of energy stores.


2016 ◽  
Vol 693 ◽  
pp. 800-806
Author(s):  
You Dan Guo

In high-strength steel hot forming, under the heating and quenching interaction, the material is oxidized and de-carbonized in the surface layer, forming a gradual change microstructure composed of ferrite, ferrite and martensite mixture and full martensite layers from surface to interior. The experiment enunciation: Form the table to ferrite, ferrite and martensite hybrid organization, completely martensite gradual change microstructure,and make the strength and rigidity of material one by one in order lower from inside to surface, ductility one by one in order increment in 22MnB5 for hot forming;Changes depends on the hot forming process temperature and the control of reheating furnace gas content protection, when oxygen levels of 5% protective gas, can better prevent oxidation and decarburization;Boron segregation in the grain boundary, solid solution strengthening, is a major cause of strength increase in ;The gradual change microstructure in outer big elongation properties, make the structure of the peak force is relatively flat, to reduce the peak impact force of structure, keep the structure of high energy absorption capacity;With lower temperature, the material yield strength rise rapidly,when the temperature is 650 °C, the yield strength at 950 °C was more than 3 times as much.


1965 ◽  
Vol 65 (3) ◽  
pp. 405-409 ◽  
Author(s):  
D. W. Robinson

1. A feeding trial was carried out using fortyeight Large White pigs, individually fed in a Danish type piggery. Six different diets prepared at two levels of digestible energy and three levels of crude protein were fed to eight replicates consisting of four hogs and four gilts per replicate. A record was maintained of the weekly live-weight gain and food was given at a defined restricted level in relation to the live weight. Carcass quality was assessed by complete dissection into visible lean, fat and bone etc.2. Of the main effects, energy, supply was without significant effect upon growth, food conversion efficiency (FCE) or any carcass characteristics except body length which was increased with a high energy level. The protein level in the diet had a significant effect upon the percentage of carcass lean and the killing-out percentage, the higher levels of protein increasing both these measurements significantly. Gilts were significantly superior to hogs in every carcass measurement although hogs grew significantly faster.


Sign in / Sign up

Export Citation Format

Share Document