scholarly journals Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

2018 ◽  
Vol 55 (3) ◽  
pp. 285-289 ◽  
Author(s):  
Jung-Hun Kim ◽  
Sung-Churl Choi
2014 ◽  
Vol 608 ◽  
pp. 235-240 ◽  
Author(s):  
Chalermkwan Makornpan ◽  
Charusporn Mongkolkachit ◽  
Suda Wanakitti ◽  
Thanakorn Wasanapiarnpong

Silicon carbide (SiC) ceramics were prepared by carbothermal reduction together with in-situ reaction bonding. Raw rice husk was carbonized in an incineration furnace. The carbonized rice husk was ground and was then treated with hydrochloric acid by varying concentrations. The sample powders were mixed with silicon metal powder and pyrolyzed at various temperatures in either argon or nitrogen atmosphere. Silicon carbide phase was found in all pyrolyzed samples. Cristobalite was found in argon atmosphere pyrolyzed samples while silicon oxynitride was found in the samples pyrolyzed in nitrogen atmosphere at lower than 1500 °C. Silicon carbide whisker is the main phase on the surface of pyrolyzed sample. Increasing pyrolysis temperatures decreased the amount and size of silicon carbide whisker but increased the silicon carbide particle. Porosity and weight loss of samples after pyrolysis were increased with increasing temperatures due to the reaction in the system.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2008 ◽  
Vol 1094 ◽  
Author(s):  
Kwok Cheung Li ◽  
Dickon H. L. Ng

AbstractWe have successfully produced biomorphic SiC ceramics from silica-infiltrated wood samples of balsa (Ochroma pyramidale) and flame tree (Delonix regia). This conversion of wood sample to a structure of SiC was performed by a sol-gel technique and a carbothermal reduction process. The biomorphic products were confirmed containing β-SiC and their structures were replica of the original structures of the raw wood samples. The biomorphic products from the denser flame tree (C-SiC) had higher specific strength than that from the biomorphic product from balsa (SiC).


2020 ◽  
Author(s):  
Yan Zhang ◽  
Shi-Kuan Sun ◽  
Wei-Ming Guo ◽  
Liang Xu ◽  
Wei Zhang ◽  
...  

Abstract High-entropy boride-silicon carbide (HEB-SiC) ceramics were fabricated by using boride-based powders prepared from borothermal and boro/carbothermal reduction methods. The effects of processing routes (borothermal reduction and boro/carbothermal reduction) of HEB powders were examined. HEB-SiC ceramics with nearly relatively full density (>98%) were prepared by spark plasma sintering at 2000oC. It was demonstrated that the addition of SiC led to slightly coarsening of the microstructure. The HEB-SiC ceramics prepared from boro/carbothermal reduction powders showed the fine-grained microstructure and higher Vickers’ hardness but lower fracture toughness values as compared with the same composition prepared from borothermal reduction powders. These results indicated that the selection of the powder processing method and the addition of SiC phase could contribute to the optimal preparation of high-entropy boride-based ceramics.


Sign in / Sign up

Export Citation Format

Share Document