Fractional Models: Sub and Super-Diffusives, and Undifferentiable Solutions

Author(s):  
J.J. Trujillo
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 782
Author(s):  
Fangying Song ◽  
George Em Karniadakis

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 787
Author(s):  
Olaniyi Iyiola ◽  
Bismark Oduro ◽  
Trevor Zabilowicz ◽  
Bose Iyiola ◽  
Daniel Kenes

The emergence of the COVID-19 outbreak has caused a pandemic situation in over 210 countries. Controlling the spread of this disease has proven difficult despite several resources employed. Millions of hospitalizations and deaths have been observed, with thousands of cases occurring daily with many measures in place. Due to the complex nature of COVID-19, we proposed a system of time-fractional equations to better understand the transmission of the disease. Non-locality in the model has made fractional differential equations appropriate for modeling. Solving these types of models is computationally demanding. Our proposed generalized compartmental COVID-19 model incorporates effective contact rate, transition rate, quarantine rate, disease-induced death rate, natural death rate, natural recovery rate, and recovery rate of quarantine infected for a holistic study of the coronavirus disease. A detailed analysis of the proposed model is carried out, including the existence and uniqueness of solutions, local and global stability analysis of the disease-free equilibrium (symmetry), and sensitivity analysis. Furthermore, numerical solutions of the proposed model are obtained with the generalized Adam–Bashforth–Moulton method developed for the fractional-order model. Our analysis and solutions profile show that each of these incorporated parameters is very important in controlling the spread of COVID-19. Based on the results with different fractional-order, we observe that there seems to be a third or even fourth wave of the spike in cases of COVID-19, which is currently occurring in many countries.


2021 ◽  
Vol 11 (3) ◽  
pp. 1325
Author(s):  
Dalia Yousri ◽  
Magdy B. Eteiba ◽  
Ahmed F. Zobaa ◽  
Dalia Allam

In this paper, novel variants for the Ensemble Particle Swarm Optimizer (EPSO) are proposed where ten chaos maps are merged to enhance the EPSO’s performance by adaptively tuning its main parameters. The proposed Chaotic Ensemble Particle Swarm Optimizer variants (C.EPSO) are examined with complex nonlinear systems concerning equal order and variable-order fractional models of Permanent Magnet Synchronous Motor (PMSM). The proposed variants’ results are compared to that of its original version to recommend the most suitable variant for this non-linear optimization problem. A comparison between the introduced variants and the previously published algorithms proves the developed technique’s efficiency for further validation. The results emerge that the Chaotic Ensemble Particle Swarm variants with the Gauss/mouse map is the most proper variant for estimating the parameters of equal order and variable-order fractional PMSM models, as it achieves better accuracy, higher consistency, and faster convergence speed, it may lead to controlling the motor’s unwanted chaotic performance and protect it from ravage.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed A. Aba Oud ◽  
Aatif Ali ◽  
Hussam Alrabaiah ◽  
Saif Ullah ◽  
Muhammad Altaf Khan ◽  
...  

AbstractCOVID-19 or coronavirus is a newly emerged infectious disease that started in Wuhan, China, in December 2019 and spread worldwide very quickly. Although the recovery rate is greater than the death rate, the COVID-19 infection is becoming very harmful for the human community and causing financial loses to their economy. No proper vaccine for this infection has been introduced in the market in order to treat the infected people. Various approaches have been implemented recently to study the dynamics of this novel infection. Mathematical models are one of the effective tools in this regard to understand the transmission patterns of COVID-19. In the present paper, we formulate a fractional epidemic model in the Caputo sense with the consideration of quarantine, isolation, and environmental impacts to examine the dynamics of the COVID-19 outbreak. The fractional models are quite useful for understanding better the disease epidemics as well as capture the memory and nonlocality effects. First, we construct the model in ordinary differential equations and further consider the Caputo operator to formulate its fractional derivative. We present some of the necessary mathematical analysis for the fractional model. Furthermore, the model is fitted to the reported cases in Pakistan, one of the epicenters of COVID-19 in Asia. The estimated value of the important threshold parameter of the model, known as the basic reproduction number, is evaluated theoretically and numerically. Based on the real fitted parameters, we obtained $\mathcal{R}_{0} \approx 1.50$ R 0 ≈ 1.50 . Finally, an efficient numerical scheme of Adams–Moulton type is used in order to simulate the fractional model. The impact of some of the key model parameters on the disease dynamics and its elimination are shown graphically for various values of noninteger order of the Caputo derivative. We conclude that the use of fractional epidemic model provides a better understanding and biologically more insights about the disease dynamics.


2017 ◽  
Vol 53 (11) ◽  
pp. 9528-9545 ◽  
Author(s):  
Kewei Chen ◽  
Hongbin Zhan ◽  
Qiang Yang

2008 ◽  
Vol 41 (2) ◽  
pp. 4078-4083 ◽  
Author(s):  
F. Khemane ◽  
R. Malti ◽  
M. Thomassin ◽  
T. Raïssi

2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


Sign in / Sign up

Export Citation Format

Share Document