Note on the Stability of a Slowly Rotating Timoshenko Beam with Damping

2015 ◽  
Vol 7 (6) ◽  
pp. 736-753 ◽  
Author(s):  
J. Woźniak ◽  
M. Firkowski

AbstractThis paper continues the senior author’s previous investigation of the slowly rotating Timoshenko beam in a horizontal plane whose movement is controlled by the angular acceleration of the disk of the driving motor into which the beam is rigidly clamped. It was shown before that this system preserves the total energy. We consider the problem of stability of the system after introducing a particular type of damping. We show that the energy of only part of the system vanishes. We illustrate obtained solution with the critical case of the infinite value of the damping coefficient.

Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Josef Diblík ◽  
Denys Ya. Khusainov ◽  
Irina V. Grytsay ◽  
Zdenĕk Šmarda

Many processes are mathematically simulated by systems of discrete equations with quadratic right-hand sides. Their stability is thought of as a very important characterization of the process. In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalueλ=1of the matrix of linear terms. In addition to the stability investigation, we also estimate stability domains.


1975 ◽  
Vol 42 (3) ◽  
pp. 552-556 ◽  
Author(s):  
A. J. Padgaonkar ◽  
K. W. Krieger ◽  
A. I. King

The computation of angular acceleration of a rigid body from measured linear accelerations is a simple procedure, based on well-known kinematic principles. It can be shown that, in theory, a minimum of six linear accelerometers are required for a complete definition of the kinematics of a rigid body. However, recent attempts in impact biomechanics to determine general three-dimensional motion of body segments were unsuccessful when only six accelerometers were used. This paper demonstrates the cause for this inconsistency between theory and practice and specifies the conditions under which the method fails. In addition, an alternate method based on a special nine-accelerometer configuration is proposed. The stability and superiority of this approach are shown by the use of hypothetical as well as experimental data.


1997 ◽  
Vol 41 (03) ◽  
pp. 210-223 ◽  
Author(s):  
K. J. Spyrou

The loss of stability of the horizontal-plane periodic motion of a steered ship in waves is investigated. In earlier reports we referred to the possibility of a broaching mechanism that will be intrinsic to the periodic mode, whereby there will exist no need for the ship to go through the surf-riding stage. However, about this point the discussion was essentially conjectural. In order to provide substance we present here a theoretical approach that is organized in two stages: Initially, we demonstrate the existence of a mechanism of parametric instability of yaw on the basis of a rudimentary, single-degree model of maneuvering motion in waves. Then, with a more elaborate model, we identify the underlying nonlinear phenomena that govern the large-amplitude horizontal ship motions, considering the ship as a multi-degree, nonlinear oscillator. Our analysis brings to light a very specific sequence of phenomena leading to cumulative broaching that involves a change in the stability of the ordinary periodic motion on the horizontal plane, a transition towards subharmonic response and, ultimately, a sudden jump to resonance. Possible means for controlling the onset of such undesirable behavior are also investigated.


2020 ◽  
Vol 22 (1) ◽  
pp. 195-206
Author(s):  
Y. Shireesha ◽  
B. Venkata Suresh ◽  
B. Sateesh

AbstractVibration is an undesirable phenomenon of ground vehicles like locomotives and vibration control of vehicle suspension system is an active subject of research. The main aim of the present work is to modeling and analysis of locomotive system. The simplified equations for dynamical locomotive are firstly established. Then the dynamical nature of the locomotive without control is investigated, and also active control suspension and passive control suspension are compare and discussed. The obtained simulation shows that suspension of the locomotive with feedback control could decrease the locomotive vibration. According to the above control strategy along with angular acceleration it also reduces the possibility of vibration of the locomotive body, to improves the stability of vehicle operation.


1995 ◽  
Vol 408 ◽  
Author(s):  
Marcel Il. F ◽  
Sluiter. Koivan Esfurjani ◽  
Yoshiyuki Kawazoe

AbstractThe FeCr sigma phase is a good example of a complex structure: it. has 30 atoms in the unit cell and 5 inequivalent lattice sites, and it belongs to the class of tetrahedrally close packed structures, also known as Frank-Kaspar structures. So far. such structures have riot been treated within a first-principles statistical thermodynamics framework. It will be shown that dtlme to advances in algorithms and hardware important features of the phase stability of complex phases can be computed. The factors which affect the stability of the sigma phase have been studied using carefully selected supercells for electronic total energy calculations. cluster variation calc:ulations in the tet.rahedron approximation were performed to evaluate the effect of partial disorder and of finite temperature. The preferred occupancy of the 5 lattice sites has been investigated and is compared with experimental determinations.


Sign in / Sign up

Export Citation Format

Share Document