scholarly journals Isolation and Characterization of Multi-Drug Resistant Bacteria from Hospital Wastewater Sites around the City of Aizawl, Mizoram

2018 ◽  
Vol 09 (07) ◽  
pp. 311-321 ◽  
Author(s):  
Lalremruata Hauhnar ◽  
Lallianmawii Pachuau ◽  
H. Lalhruaitluanga
2021 ◽  
Author(s):  
Kelly Alrich ◽  
Maksim Livshits ◽  
Loreen Stromberg ◽  
Michael T. Janicke ◽  
Mila Nhu Lam ◽  
...  

Diversifying our ability to guard against emerging pathogenic threats is essential for keeping pace with global health challenges, including those presented by drug-resistant bacteria. Some modern diagnostic and therapeutic innovations...


2005 ◽  
Vol 71 (1) ◽  
pp. 580-586 ◽  
Author(s):  
Norika Meguro ◽  
Yumiko Kodama ◽  
Maria-Trinidad Gallegos ◽  
Kazuya Watanabe

ABSTRACT PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 444
Author(s):  
Muzaheed Muzaheed ◽  
Naveed Sattar Shaikh ◽  
Saeed Sattar Shaikh ◽  
Sadananda Acharya ◽  
Shajiya Sarwar Moosa ◽  
...  

Background  The presence of Extended-spectrum β-lactamase (ESBL) positive bacteria in hospital setting is an aggravating influential factor for hospitalized patients, and its consequences may be hazardous. Therefore, there is a need for rapid detection methods for newly emerging drug-resistant bacteria. This study was aimed at the molecular characterization of ESBL-positive Klebsiella pneumoniae isolates recovered from clinical samples.   Methods  A total of 513 K. pneumoniae isolates were obtained from various clinical samples during June 2019 to May 2020. The collected isolates were investigated for antimicrobial susceptibility (antibiogram), and PCR and DNA sequencing were performed to analyse the ESBL genes.   Results  Among the 513 isolates, as many as 359 (69.9%) were ESBL producers and 87.5% were multi-drug resistant, while none had resistance to imipenem. PCR scored 3% blaTEM, 3% blaSHV, and 60% blaCTX-M-15 genes for the tested isolates.   Conclusion  The study showed that CTX-M-15 was the major prevalent ESBL type among the isolates. Additionally, all the isolates were susceptible to carbapenems. Screening and detection of ESBL tests are necessary among all isolates from the enterobacteriaceae family in routine microbiology laboratory to prevent associated nosocomial infections. A larger study is essential to understand molecular epidemiology of ESBL producing organisms to minimize morbidities due to these multidrug resistant organisms.


2000 ◽  
Vol 64 (4) ◽  
pp. 919-923 ◽  
Author(s):  
Kaneyoshi YAMAMOTO ◽  
Takashi KITAYAMA ◽  
Noriyasu ISHIDA ◽  
Takafumi WATANABE ◽  
Hiroyuki TANABE ◽  
...  

Author(s):  
Omar Assafiri ◽  
Adelene Ai-Lian Song ◽  
Irwan Hanish ◽  
Geok Hun Tan ◽  
Khatijah Yusoff

The rise in in the number of drug-resistant bacteria that can resist almost all kinds of antibiotics is due to the overuse of these antibiotics (e.g., carbapenems). Thus, there is a need to find an alternative to antibiotic treatment such as the use of phages. In this study, phage UPM1705 was isolated from a polluted lake which can lyse its host Klebsiella pneumoniae ATCC BAA-1705. Based on morphological appearance from transmission electron microscopy, UPM1705 belongs to Caudovirales (Myoviridae). UPM1705 can reach a titer of 107 PFU/ml based on the double-layer method. It has a burst size of 298 PFU/bacteria cell and a latent period of 80 min, a rise period of 75 min, and adsorption time of 20 min based on a one-step growth curve assay using an MOI of 0.02. It was stable from 4°C to 80°C and retained its functionality at pH between 4 to 11, with pH of 7 being the optimum pH for the phage growth. The efficiency of UPM1705 was tested via a turbidity assay at MOI of 0.02, 0.2, and 2. UPM1705 was able to clear the turbidity of the host bacteria culture at all of these three MOIs. Thus, UPM1705 has the potential to be used for phage therapy.


2017 ◽  
Vol 83 (23) ◽  
Author(s):  
Hugo Oliveira ◽  
Graça Pinto ◽  
Hanne Hendrix ◽  
Jean-Paul Noben ◽  
Jan Gawor ◽  
...  

ABSTRACT Providencia rettgeri is emerging as a new opportunistic pathogen with high antibiotic resistance. The need to find alternative methods to control antibiotic-resistant bacteria and the recent advances in phage therapy motivate the search for new phages able to infect Providencia spp. This study describes the isolation and characterization of an obligatory lytic phage, vB_PreS_PR1 (PR1), with therapeutic potential against drug-resistant P. rettgeri. PR1 is a siphovirus. Its virion DNA size (118,537 bp), transcriptional organization, terminal repeats (10,461 bp), and nicks in the 3′-to-5′ strand are similar to those of phage T5. However, sequence similarities of PR1 to phages of the T5virus genus at the DNA and protein levels are limited, suggesting that it belongs to a new species within the Siphoviridae family. PR1 exhibits the ability to kill P. rettgeri antibiotic-resistant strains, is highly specific to the species, and did not present known genomic markers indicating a temperate lifestyle. The lack of homologies between its proteins and proteins of the only other sequenced Providencia prophage, Redjac, suggests that these two phages evolved separately and may target different host proteins. IMPORTANCE The alarming increase in the number of bacteria resistant to antibiotics has been observed worldwide. This is particularly true for Gram-negative bacteria. For certain of their strains, no effective antibiotics are available. Providencia sp. has been a neglected pathogen but is emerging as a multidrug-resistant bacterium. This has revived interest in bacteriophages as alternative therapeutic agents against this bacterium. We describe the morphological, physiological, and genomic characterization of a novel lytic virus, PR1, which is able to kill drug-resistant P. rettgeri clinical isolates. Genomic and phylogenetic analyses indicate that PR1 is a distant relative of T5virus genus representatives. The lack of known virulence- or temperate lifestyle-associated genes in the genome of PR1 makes this phage a potential candidate for therapeutic use. Analysis of its genome also improves our knowledge of the ecology and diversity of T5-like siphoviruses, providing a new link for evolutionary studies of this phage group.


Sign in / Sign up

Export Citation Format

Share Document