scholarly journals Southern and Tropical Indian Ocean SST: A Possible Predictor of Winter Monsoon Rainfall over South India

2013 ◽  
Vol 03 (04) ◽  
pp. 440-449 ◽  
Author(s):  
Ravi P. Shukla ◽  
Shailendra Rai ◽  
Avinash C. Pandey
2000 ◽  
Vol 105 (D12) ◽  
pp. 15403-15416 ◽  
Author(s):  
M. Zachariasse ◽  
P. F. J. van Velthoven ◽  
H. G. J. Smit ◽  
J. Lelieveld ◽  
T. K. Mandal ◽  
...  

2006 ◽  
Vol 19 (8) ◽  
pp. 1567-1575 ◽  
Author(s):  
Lareef Zubair ◽  
C. F. Ropelewski

Abstract Recently, it was reported that the relationship of the Indian southwest monsoon rainfall with El Niño–Southern Oscillation (ENSO) has weakened since around 1980. Here, it is reported that in contrast, the relationship between ENSO and the northeast monsoon (NEM) in south peninsular India and Sri Lanka from October to December has not weakened. The mean circulation associated with ENSO over this region during October to December does not show the weakening evident in the summer and indeed is modestly intensified so as to augment convection. The intensification of the ENSO–NEM rainfall relationship is modest and within the historical record but stands in contrast to the weakening relationship in summer. The intensification of the circulation is consistent with the warming of surface temperatures over the tropical Indian Ocean in recent decades. There is modestly intensified convection over the Indian Ocean, strengthening of the circulation associated with ENSO (Walker circulation), and enhanced rainfall during El Niño episodes in a manner consistent with an augmented ENSO–NEM relationship.


2010 ◽  
Vol 23 (19) ◽  
pp. 5163-5174 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Hemantkumar S. Chaudhari ◽  
Samir Pokhrel ◽  
B. N. Goswami

Abstract While many of the previous positive Indian Ocean dipole (IOD) years were associated with above (below)-normal monsoon rainfall over central (southern) India during summer monsoon months [June–September (JJAS)], the IOD event in 2008 is associated with below (above)-normal rainfall in many parts of central (southern peninsular) India. Because understanding such regional organization is a key for success in regional prediction, using different datasets and atmospheric model simulations, the reasons for this abnormal behavior of the monsoon in 2008 are explored. Compared to normal positive IOD events, sea surface temperature (SST) and rainfall in the southern tropical Indian Ocean (STIO) in JJAS 2008 were abnormally high. Downwelling Rossby waves and oceanic heat advection played an important role in warming SST abnormally in the STIO. It was also found that the combined influence of a linear warming trend in the tropical Indian Ocean and warming associated with the IOD have resulted in abnormal warming of the STIO. This abnormal SST warming resulted in enhancement of convection in the southwest tropical Indian Ocean and forced anticyclonic circulation anomalies over the Bay of Bengal and central India, leading to suppressed rainfall over this region in JJAS 2008. The above mechanism is tested by conducting several model sensitivity experiments with an atmospheric general circulation model (AGCM). These experiments confirmed that the subsidence over central India and the Bay of Bengal was forced mainly by the anomalous warming in the STIO region driven by coupled ocean–atmosphere processes. This study provides the first evidence of combined Indian Ocean warming, associated with global warming, and IOD-related warming influence on Indian summer monsoon rainfall. The combined influence may force below-normal rainfall over central India by inducing strong convection in the STIO region. The conventional seesaw in convection between the Indian subcontinent and the eastern equatorial Indian Ocean may shift to the central equatorial Indian Ocean and the Bay of Bengal if the central Indian Ocean consistently warms in the global warming scenario.


2014 ◽  
Vol 27 (6) ◽  
pp. 2361-2374 ◽  
Author(s):  
Lin Wang ◽  
Wen Chen

Abstract The thermal contrast between the Asian continent and the adjacent oceans is the primary aspect of the East Asian winter monsoon (EAWM) that can be well represented in the sea level pressure (SLP) field. Based on this consideration, a new SLP-based index measuring the intensity of the EAWM is proposed by explicitly taking into account both the east–west and the north–south pressure gradients around East Asia. The new index can delineate the EAWM-related circulation anomalies well, including the deepened (shallow) midtropospheric East Asian trough, sharpened and accelerated (widened and decelerated) upper-tropospheric East Asian jet stream, and enhanced (weakened) lower-tropospheric northerly winds in strong (weak) EAWM winters. Compared with previous indices, the new index has a very good performance describing the winter-mean surface air temperature variations over East Asia, especially for the extreme warm or cold winters. The index is strongly correlated with several atmospheric teleconnections including the Arctic Oscillation, the Eurasian pattern, and the North Pacific Oscillation/western Pacific pattern, implying the possible internal dynamics of the EAWM variability. Meanwhile, the index is significantly linked to El Niño–Southern Oscillation (ENSO) and the sea surface temperature (SST) over the tropical Indian Ocean. Moreover, the SST anomalies over the tropical Indian Ocean are more closely related to the index than ENSO as an independent predictor. This adds further knowledge to the prediction potentials of the EAWM apart from ENSO. The predictability of the index is high in the hindcasts of the Centre National de Recherches Météorologiques (CNRM) model from Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Hence, it would be a good choice to use this index for the monitoring, prediction, and research of the EAWM.


2011 ◽  
Vol 11 (9) ◽  
pp. 26415-26440
Author(s):  
S.-Y. Lee ◽  
T.-Y. Koh

Abstract. The large-scale circulation over the Indian Ocean during the boreal summer raises the question of whether atmospheric conditions in Australia could influence conditions over the Indian subcontinent, despite the long passage of air over the Indian Ocean. Using a combination of reanalysis, satellite and in situ data, we argue that unusually low temperature over inland Australia during austral winter can enhance evaporation rate over the eastern tropical Indian Ocean, and hence enhance rainfall over western India after 10–18 days. Since extreme winter temperature in Australia is often associated with cold-air outbreaks, the above mechanism can be an example of how southern hemispheric mid-latitude weather can influence northern hemispheric monsoon rainfall.


2013 ◽  
Vol 20 (3) ◽  
pp. 660-671 ◽  
Author(s):  
Xuezhong CHEN ◽  
Shenglong YANG ◽  
Yu Zhang ◽  
Wei FAN ◽  
Yumei WU

2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Shiva Shankar Manche ◽  
Rabindra K. Nayak ◽  
Prakash Chandra Mohanty ◽  
M. V. R. Shesasai ◽  
V. K. Dadhwal

Sign in / Sign up

Export Citation Format

Share Document