scholarly journals Remote Sensing, Model-Derived and Ground Measurements of Snow Water Equivalent and Snow Density in Alaska

2012 ◽  
Vol 03 (05) ◽  
pp. 1127-1136 ◽  
Author(s):  
Reginald R. Muskett
1995 ◽  
Author(s):  
Charles R. Bostater, Jr. ◽  
Wei-ming Ma ◽  
Ted McNally ◽  
Manuel Gimond ◽  
A. P. Lamb

2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA183-WA193 ◽  
Author(s):  
W. Steven Holbrook ◽  
Scott N. Miller ◽  
Matthew A. Provart

The water balance in alpine watersheds is dominated by snowmelt, which provides infiltration, recharges aquifers, controls peak runoff, and is responsible for most of the annual water flow downstream. Accurate estimation of snow water equivalent (SWE) is necessary for runoff and flood estimation, but acquiring enough measurements is challenging due to the variability of snow accumulation, ablation, and redistribution at a range of scales in mountainous terrain. We have developed a method for imaging snow stratigraphy and estimating SWE over large distances from a ground-penetrating radar (GPR) system mounted on a snowmobile. We mounted commercial GPR systems (500 and 800 MHz) to the front of the snowmobile to provide maximum mobility and ensure that measurements were taken on pristine snow. Images showed detailed snow stratigraphy down to the ground surface over snow depths up to at least 8 m, enabling the elucidation of snow accumulation and redistribution processes. We estimated snow density (and thus SWE, assuming no liquid water) by measuring radar velocity of the snowpack through migration focusing analysis. Results from the Medicine Bow Mountains of southeast Wyoming showed that estimates of snow density from GPR ([Formula: see text]) were in good agreement with those from coincident snow cores ([Formula: see text]). Using this method, snow thickness, snow density, and SWE can be measured over large areas solely from rapidly acquired common-offset GPR profiles, without the need for common-midpoint acquisition or snow cores.


2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


Sign in / Sign up

Export Citation Format

Share Document