scholarly journals Numerical Solutions of Three-Dimensional Coupled Burgers’ Equations by Using Some Numerical Methods

2016 ◽  
Vol 04 (11) ◽  
pp. 2011-2030 ◽  
Author(s):  
Fatheah Ahmad Alhendi ◽  
Aisha Abdullah Alderremy
Author(s):  
Jairo Rodríguez-Padilla ◽  
Daniel Olmos-Liceaga

The implementation of numerical methods to solve and study equations for cardiac wave propagation in realistic geometries is very costly, in terms of computational resources. The aim of this work is to show the improvement that can be obtained with Chebyshev polynomials-based methods over the classical finite difference schemes to obtain numerical solutions of cardiac models. To this end, we present a Chebyshev multidomain (CMD) Pseudospectral method to solve a simple two variable cardiac models on three-dimensional anisotropic media and we show the usefulness of the method over the traditional finite differences scheme widely used in the literature.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


2020 ◽  
Vol 12 (1) ◽  
pp. 406-424 ◽  
Author(s):  
Yaoguang Huang ◽  
Aining Zhao ◽  
Tianjun Zhang ◽  
Weibin Guo

AbstractIn order to explore the effective support method for deep broken roadway, based on the in situ stress test results, the analytical and numerical solutions of the stress and the range of plastic failure zone (PFZ) in a circular roadway subjected to non-uniform loads were obtained using analytical and finite difference numerical methods based on the elastoplastic theory, respectively. Their comparison results show that the analytical and numerical methods are correct and reasonable. Furthermore, the high geostress causes the stress and range of PFZ in roadway roof and floor to increase sharply while those in roadway ribs decrease. Moreover, the greater the difference of horizontal geostress in different horizontal directions is, the larger the range of PFZ in roadway roof and floor is. The shape of PFZ in roadway varies with the ratio of horizontal lateral pressure coefficient in x-direction and y-direction. Finally, according to the distribution characteristics of PFZ and range of PFZ under the non-uniformly high geostress, this paper has proposed a combined support scheme, and refined and optimized supporting parameters. The field monitoring results prove that the roadway deformation and fracture have been effectively controlled. The research results of this paper can provide theoretical foundation as well as technical reference for the stability control of deep broken roadway under non-uniformly high geostress.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


Author(s):  
Phumlani G. Dlamini ◽  
Vusi M. Magagula

AbstractIn this paper, we introduce the multi-variate spectral quasi-linearization method which is an extension of the previously reported bivariate spectral quasi-linearization method. The method is a combination of quasi-linearization techniques and the spectral collocation method to solve three-dimensional partial differential equations. We test its applicability on the (2 + 1) dimensional Burgers’ equations. We apply the spectral collocation method to discretize both space variables as well as the time variable. This results in high accuracy in both space and time. Numerical results are compared with known exact solutions as well as results from other papers to confirm the accuracy and efficiency of the method. The results show that the method produces highly accurate solutions and is very efficient for (2 + 1) dimensional PDEs. The efficiency is due to the fact that only few grid points are required to archive high accuracy. The results are portrayed in tables and graphs.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
D. Zhou ◽  
S. H. Lo

The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.


2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


2014 ◽  
Vol 156 (A3) ◽  

The paper revisits some pioneering work of Sir Thomas Havelock on wave patterns with particular attention focused on his graphical method of analysis. Motivated by a desire to explore this method further using numerical methods, it is extended in a simple manner to give three-dimensional illustrations of the wave patterns of a point disturbance in deep and shallow water. All results are confined to the sub- and trans-critical regimes with some obtained very close to the critical Depth Froude Number. Some conclusions are drawn on the wave types produced when operating close to the critical speed and their decay with distance off.


Sign in / Sign up

Export Citation Format

Share Document