scholarly journals A Generic Polycarbonate Based Microfluidic Tool to Study Crystal Nucleation in Microdroplets

2018 ◽  
Vol 08 (01) ◽  
pp. 1-17 ◽  
Author(s):  
Daniel Selzer ◽  
Burkard Spiegel ◽  
Matthias Kind
Keyword(s):  
RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15710-15721
Author(s):  
Paavai Era ◽  
RO. MU. Jauhar ◽  
V. Viswanathan ◽  
M. Madhangi ◽  
G. Vinitha ◽  
...  

This paper discusses the structural orientations and the physico-chemical properties of a single crystal of 2-amino-4,6-dimethoxypyrimidinium hydrogen (2R,3R)-tartrate 2-amino-4,6-dimethoxypyrimidine (2ADT).


1985 ◽  
Vol 26 (9) ◽  
pp. 1102-1111 ◽  
Author(s):  
A Kibe ◽  
M A Dudley ◽  
Z Halpern ◽  
M P Lynn ◽  
A C Breuer ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6638
Author(s):  
Wenhao Zhao ◽  
Xuping Ji ◽  
Yaqing Jiang ◽  
Tinghong Pan

This work aims to study the effect of a nucleating agent on cement hydration. Firstly, the C-S-H crystal nucleation early strength agent (CNA) is prepared. Then, the effects of CNA on cement hydration mechanism, early strength enhancement effect, C-S-H content, 28-days hydration degree and 28-days fractal dimension of hydration products are studied by hydration kinetics calculation, resistivity test, BET specific surface area test and quantitative analysis of backscattered electron (BSE) images, respectively. The results show that CNA significantly improves the hydration degree of cement mixture, which is better than triethanolamine (TEA). CNA shortens the beginning time of the induction period by 49.3 min and the end time of the cement hydration acceleration period by 105.1 min than the blank sample. CNA increases the fractal dimension of hydration products, while TEA decreases the fractal dimension. CNA significantly improves the early strength of cement mortars; the 1-day and 3-days strength of cement mortars with CNA are more than the 3-days and 7-days strength of the blank sample. These results will provide a reference for the practical application of the C-S-H nucleating agent.


2015 ◽  
Vol 1770 ◽  
pp. 67-72
Author(s):  
Vernon K. Wong ◽  
A. M. Chitu ◽  
A. B. Limanov ◽  
James S. Im

ABSTRACTWe have investigated the solidified microstructure of nucleation-generated grains obtained via complete melting of Si films on SiO2 at high nucleation temperatures. This was achieved using a high-temperature-capable hot stage in conjunction with excimer laser irradiation. As predicted by the direct-growth model that considers (1) the evolution in the temperature of the solidifying interface and (2) the subsequent modes of growth (consisting of amorphous, defective, and epitaxial) as key factors, we were able to observe the appearance of “normal” grains that possess a single-crystal core area. These grains, which are in contrast to previously reported flower-shaped grains that fully make up the microstructure of the solidified films obtained via irradiation at lower preheating temperatures (and amongst which these “normal” grains emerge), indicate that epitaxial growth of nucleated crystals must have taken place within the grains. We discuss the implications of our findings regarding (1) the validity of the direct-growth model, (2) the nature of the heterogeneous nucleation mechanism, and (3) the alternative explanations and assumptions that have been previously employed in order to explain the microstructure of Si films obtained via nucleation and growth within the complete melting regime.


2021 ◽  
Vol 155 (4) ◽  
pp. 040901
Author(s):  
Katarina E. Blow ◽  
David Quigley ◽  
Gabriele C. Sosso

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 347
Author(s):  
Wenlin Zhang ◽  
Lingyi Zou

We apply molecular dynamics (MD) simulations to investigate crystal nucleation in incompatible polymer blends under deep supercooling conditions. Simulations of isothermal nucleation are performed for phase-separated blends with different degrees of incompatibility. In weakly segregated blends, slow and incompatible chains in crystallizable polymer domains can significantly hinder the crystal nucleation and growth. When a crystallizable polymer is blended with a more mobile species in interfacial regions, enhanced molecular mobility leads to the fast growth of crystalline order. However, the incubation time remains the same as that in pure samples. By inducing anisotropic alignment near the interfaces of strongly segregated blends, phase separation also promotes crystalline order to grow near interfaces between different polymer domains.


2021 ◽  
Vol 154 (24) ◽  
pp. 244505
Author(s):  
Jared A. Wood ◽  
Yawei Liu ◽  
Asaph Widmer-Cooper
Keyword(s):  

NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550118 ◽  
Author(s):  
Lei Wang ◽  
Jing Wen ◽  
CiHui Yang ◽  
Shan Gai ◽  
YuanXiu Peng

Phase-change probe memory using Ge2Sb2Te5 has been considered as one of the promising candidates as next-generation data storage device due to its ultra-high density, low energy consumption, short access time and long retention time. In order to utmostly mimic the practical setup, and thus fully explore the potential of phase-change probe memory for 10 Tbit/in2 target, some advanced modeling techniques that include threshold-switching, electrical contact resistance, thermal boundary resistance and crystal nucleation-growth, are introduced into the already-established electrothermal model to simulate the write and read performance of phase-change probe memory using an optimal media stack design. The resulting predictions clearly demonstrate the capability of phase-change probe memory to record 10 Tbit/in2 density under pico Joule energy within micro second period.


2013 ◽  
Vol 20 (4) ◽  
pp. 1049-1056 ◽  
Author(s):  
Masatoshi Maeki ◽  
Yuki Teshima ◽  
Saori Yoshizuka ◽  
Hiroshi Yamaguchi ◽  
Kenichi Yamashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document