scholarly journals Modeling and Analysis of Submerged Arc Weld Power Supply Based on Double Closed-Loop Control

2010 ◽  
Vol 03 (07) ◽  
pp. 723-727
Author(s):  
Baoshan Shi ◽  
Kuanfang He ◽  
Xuejun Li ◽  
Dongmin Xiao
Vestnik MEI ◽  
2019 ◽  
Vol 5 ◽  
pp. 62-67
Author(s):  
Nikolay G. Bazhenov ◽  
◽  
Olga A. Filina ◽  
Ekaterina Yu. Ozerova ◽  
◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wen Ren ◽  
Xia Wen ◽  
Sencai Lai

Aiming at the challenging problem of the traditional warp knitting machine electronic jacquard control system with complex structure of multiple circuit boards layered cascade, such as large physical space occupation, high power consumption, and independent high-voltage power supply voltage, we proposed an embedded circuit and control strategy design for the piezoelectric jacquard needle (PJN) with adaptive boost and energy recovery functions. Firstly, the electromechanical dynamics model of PJN was established. Secondly, the fuzzy PI double closed-loop control algorithm driven by a finite state machine is proposed. Thirdly, with the help of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), the PJN is integrated with the drive circuit. The drive circuit of PJN uses an energy storage inductor to replace the current limiting resistor of the traditional drive circuit, which can not only limit the forward charging current of the PJN and reduce energy loss but also can use the energy absorbed from the low-voltage power supply to adaptively boost the power supply of the PJN to the high voltage required for working conditions. The simulation results show that the new PJN drive circuit has an adaptive self-boost function. The PWM signal modulated by the fuzzy PI double closed-loop control algorithm can efficiently and accurately control the adaptive boost power supply and the voltage across the PJN. The mode of the circuit can be correctly switched through the sequential logic of the finite state machine and realize the energy recovery function.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document