scholarly journals Integrity Assessment of Pipe System in a Full-Scale Membrane Water Treatment Plant

2014 ◽  
Vol 06 (04) ◽  
pp. 363-374
Author(s):  
H. K. Oh ◽  
J. Y. Eom ◽  
S. H. Kang ◽  
H. C. Yoo ◽  
Y. J. Kim ◽  
...  
Author(s):  
Rahul Verma ◽  
George Horiates ◽  
Nicholas Kanellis

Abstract In this study, a segment of water conveyance system at a chemical manufacturing facility is under investigation. The pipe segment under investigation conveys a daily average flow of five million gallons of water per day (MGD) from the river to a water treatment plant. The exact age of the pipe system is unknown as limited construction or maintenance information exists. The study area is a pipe segment near the treatment plant where three flow restrictions exist within a 30-foot distance bounded by a T-junction and a water filtration plant. These restrictions include two self-actuated butterfly valves and an orifice plate on a 16-inch diameter steel pipe, buried approximately three feet below ground surface. When standing in the study area, heavy vibrations are felt at the ground surface. The valves and orifice plate are to control flowrate and reduce pressure from 80 PSI to 45PSI as the flow enters the water treatment plant. Flow restrictions in close proximity can cause cavitation, water hammer and other flow phenomena within a pipe system. This can result in excessive wear of the pipe’s inner walls and valves which may compromise the structural integrity and/or function of the system. Computational fluid dynamics (CFD) software is a useful tool for determining if the conditions for the various flow phenomena are present in a system. The flow characteristics were numerically calculated in MATLAB then computationally modeled in AFT Fathom. The purpose of the numerical analysis was to describe the stability of the fluid flow at discrete points in the pipe network and identify the network segments with significantly unstable flow profiles. The purpose of the AFT Fathom CFD model purpose was to provide a continuous simulation of the flow stability in the pipe segment and provide a more robust description of the flow profiles in the network. While Fathom cannot explicitly predict cavitation or water hammer, the kinematic parameters produced by the Fathom model and the physical conditions observed in the study indicate that water hammer is likely occurring.


2014 ◽  
Vol 71 (4) ◽  
pp. 638-644 ◽  
Author(s):  
Alina Pruss

A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1–1.5 m3/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m3/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Benjamin Buysschaert ◽  
Lotte Vermijs ◽  
Agathi Naka ◽  
Nico Boon ◽  
Bart De Gusseme

2013 ◽  
Vol 51 (31-33) ◽  
pp. 6288-6298 ◽  
Author(s):  
Jei-cheol Jeon ◽  
Chang-Hyun Jo ◽  
Ilhwan Choi ◽  
Soon-Buhm Kwon[a] Ennkyung Jang ◽  
Tae-Mun Hwang

Sign in / Sign up

Export Citation Format

Share Document