巨型水库群防洪发电联合优化调度研究与应用<br>Joint Operation of Flood Control and Hydropower Generation for the Multi-Reservoir System

2012 ◽  
Vol 01 (01) ◽  
pp. 1-6
Author(s):  
郭 生练
Author(s):  
Chen Wu ◽  
Yibo Wang ◽  
Jing Ji ◽  
Pan Liu ◽  
Liping Li ◽  
...  

Reservoirs play important roles in hydropower generation, flood control, water supply, and navigation. However, the regulation of reservoirs is challenged due to their adverse influences on river ecosystems. This study uses ecoflow as an ecological indicator for reservoir operation to indicate the extent of natural flow alteration. Three reservoir optimization models are established to derive ecological operating rule curves. Model 1 only considers the maximization of average annual hydropower generation and the assurance rate of hydropower generation. Model 2 incorporates ecological objectives and constraints. Model 3 not only considers the hydropower objectives but also simulates the runoff and calculates the ecological indicator values of multiple downstream stations. The three models are optimized by a simulation-optimization framework. The reservoir ecological operating rule curves are derived for the case study of China's Three Gorges Reservoir. The results represent feasible schemes for reservoir operation by considering both hydropower and ecological demands. The average annual power generation and assurance rate of a preferred optimized scheme for Model 3 are increased by 1.06% and 2.50%, respectively. Furthermore, ecological benefits of the three hydrologic stations are also improved. In summary, the ecological indicator ecoflow and optimization models could be helpful for reservoir ecological operations.


2020 ◽  
Author(s):  
Shaokun He ◽  
Shenglian Guo ◽  
Chong-Yu Xu ◽  
Kebing Chen ◽  
Zhen Liao ◽  
...  

Abstract. Joint and optimal impoundment operation of the large-scale reservoir system has become more crucial for modern water management. Since the existing techniques fail to optimize the large-scale multi-objective impoundment operation due to the complex inflow stochasticity and high dimensionality, we develop a novel combination of parameter simulation optimization and classification-aggregation-decomposition approach here to overcome these obstacles. There are four main steps involved in our proposed framework: (1) reservoirs classification based on geographical location and flood prevention targets; (2) assumption of a hypothetical single reservoir in the same pool; (3) the derivation of the initial impoundment policies by the non-dominated sorting genetic algorithm-II (NSGA-II); (4) further improvement of the impoundment policies via Parallel Progressive Optimization Algorithm (PPOA). The framework potential is performed on China's mixed 30-reservoir system in the upper Yangtze River. Results indicate that our method can provide a series of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency from 89.50 % to 94.16 % and hydropower generation by 7.70 billion kWh (or increase 3.79 %) while flood control risk is less than 0.06.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2542 ◽  
Author(s):  
Mufeng Chen ◽  
Zengchuan Dong ◽  
Wenhao Jia ◽  
Xiaokuan Ni ◽  
Hongyi Yao

The multi-objective optimal operation and the joint scheduling of giant-scale reservoir systems are of great significance for water resource management; the interactions and mechanisms between the objectives are the key points. Taking the reservoir system composed of 30 reservoirs in the upper reaches of the Yangtze River as the research object, this paper constructs a multi-objective optimal operation model integrating four objectives of power generation, ecology, water supply, and shipping under the constraints of flood control to analyze the inside interaction mechanisms among the objectives. The results are as follows. (1) Compared with single power generation optimization, multi-objective optimization improves the benefits of the system. The total power generation is reduced by only 4.09% at most, but the water supply, ecology, and shipping targets are increased by 98.52%, 35.09%, and 100% at most under different inflow conditions, respectively. (2) The competition between power generation and the other targets is the most obvious; the relationship between water supply and ecology depends on the magnitude of flow required by the control section for both targets, and the restriction effect of the shipping target is limited. (3) Joint operation has greatly increased the overall benefits. Compared with the separate operation of each basin, the benefits of power generation, water supply, ecology, and shipping increased by 5.50%, 45.99%, 98.49%, and 100.00% respectively in the equilibrium scheme. This study provides a widely used method to analyze the multi-objective relationship mechanism, and can be used to guide the actual scheduling rules.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 643 ◽  
Author(s):  
Xuan Liu ◽  
Mingxiang Yang ◽  
Xianyong Meng ◽  
Fan Wen ◽  
Guangdong Sun

The construction and operation of cascade reservoirs has changed the natural hydrological cycle in the Yalong River Basin, and reduced the accuracy of hydrological forecasting. The impact of cascade reservoir operation on the runoff of the Yalong River Basin is assessed, providing a theoretical reference for the construction and joint operation of reservoirs. In this paper, eight scenarios were set up, by changing the reservoir capacity, operating location, and relative location in the case of two reservoirs. The aim of this study is to explore the impact of the capacity and location of a single reservoir on runoff processes, and the effect of the relative location in the case of joint operation of reservoirs. The results show that: (1) the reservoir has a delay and reduction effect on the flood during the flood season, and has a replenishment effect on the runoff during the dry season; (2) the impact of the reservoir on runoff processes and changes in runoff distribution during the year increases with the reservoir capacity; (3) the mitigation of flooding is more obvious at the river basin outlet control station when the reservoir is further downstream; (4) an arrangement with the smaller reservoir located upstream and the larger reservoir located downstream can maximize the benefits of the reservoirs in flood control.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 217-228 ◽  
Author(s):  
Bertrand Richaud ◽  
Henrik Madsen ◽  
Dan Rosbjerg ◽  
Claus B. Pedersen ◽  
Long L. Ngo

Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real-time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation of the long-term objectives from the optimised rule curves. The method is illustrated for optimisation of the Hoa Binh reservoir in Vietnam. The approach is proven efficient to trade-off conflicting objectives. Selected by a Pareto optimisation method, the preferred optimum is able to mitigate the floods in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality of the forecast is addressed. The results illustrate the importance of a sufficient forecast lead time to start pre-releasing water in flood situations.


2020 ◽  
Author(s):  
Lin Zhang ◽  
Wei Ding ◽  
Guoli Wang

&lt;p&gt;During flood seasons, the water head of the reservoir is kept in flood limited water level (FLWL) to satisfy the flood control objective, but this runs counter to the need for hydropower generation to maintain a high water-head. This paper focuses on the optimal hedging rules by setting an appropriate FLWL to maximize the benefit of hydropower without increasing the flood damage and raise the water level at the end of flood for non-flood season/future use. Two-stage hydropower functions considering the constraint conditions which include the downstream environmental flow and installed capacity are built. On the basis of studying the marginal utilities of the two-stage hydropower functions, the competitive and collaborative relationships between flood damage and hydropower benefit were analyzed qualitatively. A two-stage reservoir operation model with two objectives that are minimum flood damage and maximum hydropower generation is developed, which considers streamflow forecast uncertainty and acceptable flood risk. The derived OHR from the model can be used to make trade-offs between flood damage and hydropower benefit under different levels of streamflow forecast uncertainty or acceptable risk. Finally, the analysis is applied to the Nierji Reservoir in the north of China. The results indicate that the OHR can increase hydropower generation 1.57x106kw&amp;#183;h and decrease the volume of abandoned water30.04x106m3 average annual.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document