考虑水库调蓄影响的设计洪水计算方法Design Flood Estimation at Downstream Section by Considering the Impact of Upstream Reservoir Regulation

2012 ◽  
Vol 01 (04) ◽  
pp. 211-216
Author(s):  
刘 章君
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1641 ◽  
Author(s):  
Phuong Cu Thi ◽  
James Ball ◽  
Ngoc Dao

In the last few decades tremendous progress has been made in the use of catchment models for the analysis and understanding of hydrologic systems. A common application involves the use of these models to predict flows at catchment outputs. However, the outputs predicted by these models are often deterministic because they focused only on the most probable forecast without an explicit estimate of the associated uncertainty. This paper uses Bayesian and Generalized Likelihood Uncertainty Estimation (GLUE) approaches to estimate uncertainty in catchment modelling parameter values and uncertainty in design flow estimates. Testing of join probability of both these estimates has been conducted for a monsoon catchment in Vietnam. The paper focuses on computational efficiency and the differences in results, regardless of the philosophies and mathematical rigor of both methods. It was found that the application of GLUE and Bayesian techniques resulted in parameter values that were statistically different. The design flood quantiles estimated by the GLUE method were less scattered than those resulting from the Bayesian approach when using a closer threshold value (1 standard deviation departed from the mean). More studies are required to evaluate the impact of threshold in GLUE on design flood estimation.


2020 ◽  
Author(s):  
Shima Azimi ◽  
Silvia Barbetta ◽  
Tommaso Moramarco ◽  
Angelica Tarpanelli ◽  
Stefania Camici ◽  
...  

<p>Flood is one of the most frequent disasters which dangerously impacts societies and economies worldwide. Floodplain management and hydraulic risk analysis based on design flood estimation are essential tools to reduce damages and save human lives. Flood Frequency Analysis (FFA) has been classically used to derive design river discharge estimates, however, the scarce availability of discharge observations, especially in small catchments (<150 km2), makes its application not always possible. In addition, with the projections foreseen by the International Panel on Climate Change (IPCC) the use of FFA might lead to incorrect estimates of design river discharge as FFA is based on the concept of stationarity. Generally, long rainfall and temperature time series are much more available than discharge observations but their temporal coverage is often not sufficient for carrying out FFA via a hydrological simulation.</p><p>To handle these drawbacks, the combination of a stochastic generation of rainfall and temperature time series, Regional Circulation Model (RCM) projections and continuous hydrological models provides a reliable tool for obtaining long river discharge time series to implement FFA. However, design flood estimations can be significantly uncertain due to several factors such as 1) the specific model structure, parameterizations and processes representation, 2) the catchment hydrology and 3) the specific climate change scenario.</p><p>The primary objective of this study is to explore the sensitivity of the design river discharge estimates to the hydrological model complexity and parameterization. For this, three continuous hydrological distributed models named the Modello Idrologico SemiDistribuito in continuo (MISDc), the Soil & Water Assessment Tool (SWAT) and GEOFrame NewAGE model are forced with long timeseries of rainfall and temperature obtained via the Neyman-Scott rectangular pulse model (NSRP) for stochastic rainfall generation, and the fractionally differenced ARIMA model (FARIMA) for stochastic temperature generation. A secondary objective is to understand the impact of climate change and the catchment hydrology on the design river discharge estimates via the use of different RCM projections.</p><p>The study is carried in the Upper Nera catchment in Central Italy which was impacted by the recent 2016 earthquake and for which is necessary to identify hydraulic risk mitigation measures and adaptation for a forward planning in the floodplain areas where new settlements will be rebuilt.</p><p>Preliminary results suggest the high dependency of the design river discharge estimates to the chosen hydrological model and a different response of the sub-catchments to the climate change scenario.</p>


2016 ◽  
Vol 49 (8) ◽  
pp. 719-729
Author(s):  
Hyunseung Lee ◽  
Taesam Lee ◽  
Taewoong Park ◽  
Chanyoung Son

2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


INOVA-TIF ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Muhammad Ardi

<em>Flood disasters still occur regularly and continuously in Indonesia. Flooding can occur due to the volume of water in the river beyond the river body. Many impacts caused by flooding, not only material losses, flooding can also cause loss of life. The impact of flooding can be reduced if people are better prepared to face the flood. One way is to quickly disseminate information on river water levels to the community. It is necessary to make a solution on how to design an automatic sluice using Arduino UNO R3 and how to monitor the water situation during floods. The working principle of this tool uses an ultrasonic sensor as a water level detector, Arduino as a data processor, servo motor as opening and closing the door bar automatically and the modem as an SMS notification. Because design based detection system is needed In this study there are two formulations of the problem (i) How to design flood altitude detection devices using Arduino uno r3 which can open and close automatically. (ii) How to test the flood altitude detection system using a wavecome modem. The research objective is divided into two parts (i) Creating a series of flood elevation devices using Arduino r3 so that it can open and close automatically (ii) Gets the results of flood elevation system testing with an sms gateway</em>


Sign in / Sign up

Export Citation Format

Share Document