On the impact of the hydrological model and catchment hydrology on the design flood estimation in a small catchment in Central Italy affected by the recent 2016 earthquake events

Author(s):  
Shima Azimi ◽  
Silvia Barbetta ◽  
Tommaso Moramarco ◽  
Angelica Tarpanelli ◽  
Stefania Camici ◽  
...  

<p>Flood is one of the most frequent disasters which dangerously impacts societies and economies worldwide. Floodplain management and hydraulic risk analysis based on design flood estimation are essential tools to reduce damages and save human lives. Flood Frequency Analysis (FFA) has been classically used to derive design river discharge estimates, however, the scarce availability of discharge observations, especially in small catchments (<150 km2), makes its application not always possible. In addition, with the projections foreseen by the International Panel on Climate Change (IPCC) the use of FFA might lead to incorrect estimates of design river discharge as FFA is based on the concept of stationarity. Generally, long rainfall and temperature time series are much more available than discharge observations but their temporal coverage is often not sufficient for carrying out FFA via a hydrological simulation.</p><p>To handle these drawbacks, the combination of a stochastic generation of rainfall and temperature time series, Regional Circulation Model (RCM) projections and continuous hydrological models provides a reliable tool for obtaining long river discharge time series to implement FFA. However, design flood estimations can be significantly uncertain due to several factors such as 1) the specific model structure, parameterizations and processes representation, 2) the catchment hydrology and 3) the specific climate change scenario.</p><p>The primary objective of this study is to explore the sensitivity of the design river discharge estimates to the hydrological model complexity and parameterization. For this, three continuous hydrological distributed models named the Modello Idrologico SemiDistribuito in continuo (MISDc), the Soil & Water Assessment Tool (SWAT) and GEOFrame NewAGE model are forced with long timeseries of rainfall and temperature obtained via the Neyman-Scott rectangular pulse model (NSRP) for stochastic rainfall generation, and the fractionally differenced ARIMA model (FARIMA) for stochastic temperature generation. A secondary objective is to understand the impact of climate change and the catchment hydrology on the design river discharge estimates via the use of different RCM projections.</p><p>The study is carried in the Upper Nera catchment in Central Italy which was impacted by the recent 2016 earthquake and for which is necessary to identify hydraulic risk mitigation measures and adaptation for a forward planning in the floodplain areas where new settlements will be rebuilt.</p><p>Preliminary results suggest the high dependency of the design river discharge estimates to the chosen hydrological model and a different response of the sub-catchments to the climate change scenario.</p>

2021 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Davide De Santis ◽  
Fabio Del Frate ◽  
Giovanni Schiavon

Evaluation of the impact of climate change on water bodies has been one of the most discussed open issues of recent years. The exploitation of satellite data for the monitoring of water surface temperatures, combined with ground measurements where available, has already been shown in several previous studies, but these studies mainly focused on large lakes around the world. In this work the water surface temperature characterization during the last few decades of two small–medium Italian lakes, Lake Bracciano and Lake Martignano, using satellite data is addressed. The study also takes advantage of the last space-borne platforms, such as Sentinel-3. Long time series of clear sky conditions and atmospherically calibrated (using a simplified Planck’s Law-based algorithm) images were processed in order to derive the lakes surface temperature trends from 1984 to 2019. The results show an overall increase in water surface temperatures which is more evident on the smallest and shallowest of the two test sites. In particular, it was observed that, since the year 2000, the surface temperature of both lakes has risen by about 0.106 °C/year on average, which doubles the rate that can be retrieved by considering the whole period 1984–2019 (0.053 °C/year on average).


2019 ◽  
Vol 100 ◽  
pp. 00041
Author(s):  
Leszek Kuchar ◽  
Ewa Broszkiewicz-Suwaj ◽  
Slawomir Iwanski ◽  
Leszek Jelonek

In this paper a time series analysis for daily flow simulations according three climate change scenario for Kaczawa River a left side tributary of the Odra River in south-west Poland is presented. The flow sequences were simulated using the hydrological model MIKE SHE and the spatial SWGEN meteorological data generator. Meteorological data for the hydrological model were generated based on data from 24 meteorological stations and 35-year daily data from the Institute of Meteorology and Water Management of the National Research Institute (IMGW). Data were generated for future climate condition for 2060 according GISS Model E, HadCM3, and GFDL R15 scenarios as well for the present conditions. The year 2000 was used as a reference year. The results obtained on the basis of a simple time series analysis point to small changes in flows for current and simulated conditions for 2060 for the Kaczawa River.


2016 ◽  
Vol 49 (8) ◽  
pp. 719-729
Author(s):  
Hyunseung Lee ◽  
Taesam Lee ◽  
Taewoong Park ◽  
Chanyoung Son

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


2011 ◽  
Vol 4 (4) ◽  
pp. 1103-1114 ◽  
Author(s):  
F. Maignan ◽  
F.-M. Bréon ◽  
F. Chevallier ◽  
N. Viovy ◽  
P. Ciais ◽  
...  

Abstract. Atmospheric CO2 drives most of the greenhouse effect increase. One major uncertainty on the future rate of increase of CO2 in the atmosphere is the impact of the anticipated climate change on the vegetation. Dynamic Global Vegetation Models (DGVM) are used to address this question. ORCHIDEE is such a DGVM that has proven useful for climate change studies. However, there is no objective and methodological way to accurately assess each new available version on the global scale. In this paper, we submit a methodological evaluation of ORCHIDEE by correlating satellite-derived Vegetation Index time series against those of the modeled Fraction of absorbed Photosynthetically Active Radiation (FPAR). A perfect correlation between the two is not expected, however an improvement of the model should lead to an increase of the overall performance. We detail two case studies in which model improvements are demonstrated, using our methodology. In the first one, a new phenology version in ORCHIDEE is shown to bring a significant impact on the simulated annual cycles, in particular for C3 Grasses and C3 Crops. In the second case study, we compare the simulations when using two different weather fields to drive ORCHIDEE. The ERA-Interim forcing leads to a better description of the FPAR interannual anomalies than the simulation forced by a mixed CRU-NCEP dataset. This work shows that long time series of satellite observations, despite their uncertainties, can identify weaknesses in global vegetation models, a necessary first step to improving them.


2021 ◽  
Author(s):  
Ponnambalam Rameshwaran ◽  
Ali Rudd ◽  
Vicky Bell ◽  
Matt Brown ◽  
Helen Davies ◽  
...  

<p>Despite Britain’s often-rainy maritime climate, anthropogenic water demands have a significant impact on river flows, particularly during dry summers. In future years, projected population growth and climate change are likely to increase the demand for water and lead to greater pressures on available freshwater resources.</p><p>Across England, abstraction (from groundwater, surface water or tidal sources) and discharge data along with ‘Hands off Flow’ conditions are available for thousands of individual locations; each with a licence for use, an amount, an indication of when abstraction can take place, and the actual amount of water abstracted (generally less than the licence amount). Here we demonstrate how these data can be used in combination to incorporate anthropogenic artificial influences into a grid-based hydrological model. Model simulations of both high and low river flows are generally improved when abstractions and discharges are included, though for some catchments model performance decreases. The new approach provides a methodological baseline for further work investigating the impact of anthropogenic water use and projected climate change on future river flows.</p>


Sign in / Sign up

Export Citation Format

Share Document