scholarly journals Distribution of constitutive heterochromatin in species of triatomines with fragmentation of sex chromosomes X

2014 ◽  
Vol 13 (4) ◽  
pp. 10279-10284 ◽  
Author(s):  
A.L. Guerra ◽  
K.C.C. Alevi ◽  
J.A. Rosa ◽  
M.T.V. Azeredo-Oliveira
1977 ◽  
Vol 19 (3) ◽  
pp. 537-541 ◽  
Author(s):  
J. E. K. Cooper

The distribution of constitutive heterochromatin has been examined by C-banding in two somatic cell lines, grown in vitro, from a female Microtus agrestis. One line retains one intact X chromosome together with the short arm of the other X chromosome, while the other cell line retains only the short arm of one X chromosome. Thus, each cell line has lost substantial amounts of heterochromatin from the sex chromosomes, but this material has been deleted from the cells, and not translocated to other chromosomes. Nonetheless, both cell lines continue to propagate well in vitro.


1981 ◽  
Vol 23 (4) ◽  
pp. 611-619 ◽  
Author(s):  
Allan J. Baker ◽  
M. Parslow ◽  
D. Chambers

The chromosomes of Haematopus unicolor Forster were examined from cultures of embryo cells. The diploid complement for one individual was estimated to be 2n = 72, comprising 35 autosomes and a pair of sex chromosomes. The W chromosome is a medium size submetacentric. It is smaller than the Z and is the only chromosome with noncentromeric constitutive heterochromatin. The only other species of this genus whose karyotype is known, H. ostralegus, differs from H. unicolor in having a smaller diploid complement (2n = 66) and a telocentric W chromosome. Comparative karyological studies of other species will likely provide valuable data for clarifying the systematics of the Haematopodidae.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 818-821 ◽  
Author(s):  
G. Röder ◽  
K. E. Linsenmair ◽  
I. Nanda ◽  
M. Schmid

The karyotype of male and female Hemilepistus elongatus was investigated by means of C-banding. The diploid chromosome number in both sexes is 2n = 50. By scrutinizing general morphology and localization of the constitutive heterochromatin, no heteromorphic sex chromosomes were found. All chromosome pairs in males are well paired during diakinesis. Hybridization of genomic DNA with (GACA)4 and (GATA)4 oligonucleotides revealed no sex-specific patterns. Key words : karyotype, C-banding, sex determination, simple DNA-repeats, Isopoda.


Genetics ◽  
1982 ◽  
Vol 102 (4) ◽  
pp. 795-806
Author(s):  
Baldev K Vig

ABSTRACT The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres.


1984 ◽  
Vol 26 (4) ◽  
pp. 425-429 ◽  
Author(s):  
S. Wibowo ◽  
V. Baimai ◽  
R. G. Andre

Analyses of metaphase chromosomes of four taxa of the Anopheles balabacensis complex (A. dirus A, B, and C, and A. takasagoensis) using the Hoechst 33258 staining technique have revealed remarkable differences in the fluorescence banding patterns of the sex chromosomes. These result from changes in the amount and distribution of constitutive heterochromatin. This evidence supports the results from cross-mating experiments and from morphological studies which indicate that three of these taxa, A. takasagoensis, dirus A, and dirus B, are sibling species. Differences in H-staining patterns of the sex chromosomes of a dirus colony from Kanchanaburi suggest that it too is a genetically distinct taxon, provisionally designated as dirus C, within the A. balabacensis complex.Key words: Anopheles, H-banding, heterochromatin, sex chromosomes.


2015 ◽  
Vol 147 (2-3) ◽  
pp. 169-178 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein ◽  
Cassia F. Yano ◽  
Marcelo B. Cioffi

Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.


2019 ◽  
Vol 157 (1-2) ◽  
pp. 53-64 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein ◽  
Alina M. Reiter ◽  
Michail Rovatsos ◽  
Marie Altmanová ◽  
...  

An experimental approach using monoclonal anti-5-methylcytosine antibodies and indirect immunofluorescence was elaborated for detecting 5-methylcytosine-rich chromosome regions in reptilian chromosomes. This technique was applied to conventionally prepared mitotic metaphases of 2 turtle species and 12 squamate species from 8 families. The hypermethylation patterns were compared with C-banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and are located in constitutive heterochromatin. They are highly reproducible and often found in centromeric, pericentromeric, and interstitial positions of the chromosomes. Heterochromatic regions in differentiated sex chromosomes are particularly hypermethylated.


2018 ◽  
Vol 154 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Beata Grzywacz ◽  
Haruki Tatsuta ◽  
Kei-ichiro Shikata ◽  
Elżbieta Warchałowska-Śliwa

In the present paper, karyotypes of 7 Japanese Podismini species, Anapodisma beybienkoi, Fruhstorferiola okinawaensis, Parapodisma caelestis, P. mikado, P. setouchiensis, P. tenryuensis, and Sinopodisma punctata (2n♂ = 21, all acrocentric), are described and compared on the basis of conventional (C-banding, DAPI/CMA3-staining, Ag-NOR) and molecular (FISH with 18S rDNA and telomeric probes) cytogenetic staining methods. This is the first study to report karyotypes of A. beybienkoi and P. caelestis. Differential staining techniques showed karyotypic diversity in these species. The number of 18S rDNA signals ranged from 2 to 6, and the signals were located on the autosomes or sex chromosomes. In all species, clusters of rDNA coincided with Ag-NORs. Telomeric signals occurred at the chromosome ends at the pachytene stage and seldom at other stages of meiosis. Paracentromeric and some distal and interstitial blocks of constitutive heterochromatin were detected in the chromosomes of Anapodisma, Fruhstorferiola, and Parapodisma species. Staining with DAPI and CMA3 revealed 2 groups of heterochromatin composition. In addition, intraspecific differences in the number of rDNA clusters and C-bands were observed within Parapodisma species. Based on the evidence of cytogenetic characteristics, the monophyly of Tonkinacridina cannot be supported.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. S. M. Abu Shnaf ◽  
M. S. Al-Khalifa

Abstract The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.


Sign in / Sign up

Export Citation Format

Share Document