KARYOLOGICAL STUDIES OF A FEMALE VARIABLE OYSTERCATCHER (HAEMATOPUS UNICOLOR)

1981 ◽  
Vol 23 (4) ◽  
pp. 611-619 ◽  
Author(s):  
Allan J. Baker ◽  
M. Parslow ◽  
D. Chambers

The chromosomes of Haematopus unicolor Forster were examined from cultures of embryo cells. The diploid complement for one individual was estimated to be 2n = 72, comprising 35 autosomes and a pair of sex chromosomes. The W chromosome is a medium size submetacentric. It is smaller than the Z and is the only chromosome with noncentromeric constitutive heterochromatin. The only other species of this genus whose karyotype is known, H. ostralegus, differs from H. unicolor in having a smaller diploid complement (2n = 66) and a telocentric W chromosome. Comparative karyological studies of other species will likely provide valuable data for clarifying the systematics of the Haematopodidae.

2015 ◽  
Vol 147 (2-3) ◽  
pp. 169-178 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein ◽  
Cassia F. Yano ◽  
Marcelo B. Cioffi

Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. S. M. Abu Shnaf ◽  
M. S. Al-Khalifa

Abstract The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.


1977 ◽  
Vol 19 (3) ◽  
pp. 537-541 ◽  
Author(s):  
J. E. K. Cooper

The distribution of constitutive heterochromatin has been examined by C-banding in two somatic cell lines, grown in vitro, from a female Microtus agrestis. One line retains one intact X chromosome together with the short arm of the other X chromosome, while the other cell line retains only the short arm of one X chromosome. Thus, each cell line has lost substantial amounts of heterochromatin from the sex chromosomes, but this material has been deleted from the cells, and not translocated to other chromosomes. Nonetheless, both cell lines continue to propagate well in vitro.


Evolution ◽  
2014 ◽  
Vol 68 (11) ◽  
pp. 3281-3295 ◽  
Author(s):  
Alison E. Wright ◽  
Peter W. Harrison ◽  
Stephen H. Montgomery ◽  
Marie A. Pointer ◽  
Judith E. Mank

2014 ◽  
Vol 13 (4) ◽  
pp. 10279-10284 ◽  
Author(s):  
A.L. Guerra ◽  
K.C.C. Alevi ◽  
J.A. Rosa ◽  
M.T.V. Azeredo-Oliveira

2020 ◽  
Author(s):  
Zahida Sultanova ◽  
Philip A. Downing ◽  
Pau Carazo

ABSTRACTSex-specific lifespans are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing “unguarded-X” hypothesis (UXh) explains this by differential expression of recessive mutations in the X/Z chromosome of the heterogametic sex (e.g., females in birds and males in mammals), but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y/W chromosome might lower the survival of the heterogametic sex (“toxic Y” hypothesis). Here, we report lower survival of the heterogametic relative to the homogametic sex across 138 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans. We then analysed bird and mammal karyotypes and found that the relative sizes of the X and Z chromosomes are not associated with sex-specific lifespans, contrary to UXh predictions. In contrast, we found that Y size correlates negatively with male survival in mammals, where toxic Y effects are expected to be particularly strong. This suggests that small Y chromosomes benefit male lifespans. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan, but indicate that, at least in mammals, this is better explained by “toxic Y” rather than UXh effects.


Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1083-1092 ◽  
Author(s):  
Iva Fuková ◽  
Petr Nguyen ◽  
František Marec

We performed a detailed karyotype analysis in the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), the key pest of pome fruit in the temperate regions of the world. The codling moth karyotype consisted of 2n = 56 chromosomes of a holokinetic type. The chromosomes were classified into 5 groups according to their sizes: extra large (3 pairs), large (3 pairs), medium (15 pairs), small (5 pairs), and dot-like (2 pairs). In pachytene nuclei of both sexes, a curious NOR (nucleolar organizer region) bivalent was observed. It carried 2 nucleoli, each associated with one end of the bivalent. FISH with an 18S ribosomal DNA probe confirmed the presence of 2 clusters of rRNA genes at the opposite ends of the bivalent. In accordance with this finding, 2 homologous NOR chromosomes were identified in mitotic metaphase, each showing hybridization signals at both ends. In highly polyploid somatic nuclei, females showed a large heterochromatin body, the so-called sex chromatin or W chromatin. The heterochromatin body was absent in male nuclei, indicating a WZ/ZZ (female/male) sex chromosome system. In keeping with the sex chromatin status, pachytene oocytes showed a sex chromosome bivalent (WZ) that was easily discernible by its heterochromatic W thread. To study molecular differentiation of the sex chromosomes, we employed genomic in situ hybridization (GISH) and comparative genomic hybridization (CGH). GISH detected the W chromosome by strong binding of the Cy3-labelled, female-derived DNA probe. With CGH, both the Cy3-labelled female-derived probe and Fluor-X labelled male-derived probe evenly bound to the W chromosome. This suggested that the W chromosome is predominantly composed of repetitive DNA sequences occurring scattered in other chromosomes but accumulated in the W chromosome. The demonstrated ways of W chromosome identification will facilitate the development of genetic sexing strains desirable for pest control using the sterile insect technique.Key words: CGH, codling moth, FISH, GISH, genomic hybridization, heterochromatin, holokinetic chromosomes, karyotype, NOR, rDNA, SIT, sex chromosomes.


2019 ◽  
Vol 158 (3) ◽  
pp. 152-159 ◽  
Author(s):  
Ricardo J. Gunski ◽  
Rafael Kretschmer ◽  
Marcelo Santos de Souza ◽  
Ivanete de Oliveira Furo ◽  
Suziane A. Barcellos ◽  
...  

Among birds, species with the ZZ/ZW sex determination system generally show significant differences in morphology and size between the Z and W chromosomes (with the W usually being smaller than the Z). In the present study, we report for the first time the karyotype of the spot-flanked gallinule (Gallinula melanops) by means of classical and molecular cytogenetics. The spot-flanked gallinule has 2n = 80 (11 pairs of macrochromosomes and 29 pairs of microchromosomes) with an unusual W chromosome that is larger than the Z. Besides being totally heterochromatic, it has a secondary constriction in its long arm corresponding to the nucleolar organizer region, as confirmed by both silver staining and mapping of 18S rDNA probes. This is an unprecedented fact among birds. Additionally, 18S rDNA sites were also observed in 6 microchromosomes, while 5S rDNA was found in just 1 microchromosomal pair. Seven out of the 11 used microsatellite sequences were found to be accumulated in microchromosomes, and 6 microsatellite sequences were found in the W chromosome. In addition to the involvement of heterochromatin and repetitive DNAs in the differentiation of the large W chromosome, the results also show an alternative scenario that highlights the plasticity that shapes the evolutionary history of bird sex chromosomes.


2016 ◽  
Vol 149 (3) ◽  
pp. 182-190 ◽  
Author(s):  
Marcela B. Pucci ◽  
Patricia Barbosa ◽  
Viviane Nogaroto ◽  
Mara C. Almeida ◽  
Roberto F. Artoni ◽  
...  

Sex chromosome evolution involves the accumulation of repeat sequences such as multigenic families, noncoding repetitive DNA (satellite, minisatellite, and microsatellite), and mobile elements such as transposons and retrotransposons. Most species of Characidium exhibit heteromorphic ZZ/ZW sex chromosomes; the W is characterized by an intense accumulation of repetitive DNA including dispersed satellite DNA sequences and transposable elements. The aim of this study was to analyze the distribution pattern of 18 different tandem repeats, including (GATA)n and (TTAGGG)n, in the genomes of C. zebra and C. gomesi, especially in the C. gomesi W chromosome. In the C. gomesi W chromosome, weak signals were seen for (CAA)10, (CAC)10, (CAT)10, (CGG)10, (GAC)10, and (CA)15 probes. (GA)15 and (TA)15 hybridized to the autosomes but not to the W chromosome. The (GATA)n probe hybridized to the short arms of the W chromosome as well as the (CG)15 probe. The (GATA)n repeat is known to be a protein-binding motif. GATA-binding proteins are necessary for the decondensation of heterochromatic regions that hold coding genes, especially in some heteromorphic sex chromosomes that may keep genes related to oocyte development. The (TAA)10 repeat is accumulated in the entire W chromosome, and this microsatellite accumulation is probably involved in the sex chromosome differentiation process and crossover suppression in C. gomesi. These additional data on the W chromosome DNA composition help to explain the evolution of sex chromosomes in Characidium.


Sign in / Sign up

Export Citation Format

Share Document