A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons

Author(s):  
Muhammad Goli ◽  
Azim Eskandarian

Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively. The simulation results show that the proposed approach is a suitable tool to handle the nonlinearities in the vehicle dynamics, the complication of the multivehicle merging scenario, and the presence of modeling uncertainties and measurement noise.

Author(s):  
Fateme Bakhshande ◽  
Dirk Söffker

This paper focuses on the design of an observer-based backstepping controller (BC) for a nonlinear hydraulic differential cylinder system. The system is affected by some uncertainties including modeling errors, external disturbances, and measurement noise. An observer-based control approach is proposed to assure suitable tracking performance and to increase robustness against unknown inputs. The task to estimate system states as well as unknown inputs is performed by a linear proportional-integral-observer (PIO). Input–output linearization is used to linearize the nonlinear system model to be used for the PIO structure. On the other hand, BC is utilized based on nonlinear system model to construct the Lyapunov function and to design the control input simultaneously. Stability or negativeness of the derivative of every-step Lyapunov function is fulfilled. Structural improvement regarding the combination of BC and PIO is the main aim of this contribution. This is supported by a novel stability proof and new conditions for the whole control loop with integrated PIO. Furthermore, parameter selection of BC is elaborately considered by defining a performance/energy criterion. A complete robustness evaluation considering different levels of additional measurement noise, modeling errors, and external disturbances is presented for the first time in this contribution. Experimental results validate the advantages of proposed observer-based approach compared to PIO-based sliding mode control (PIO-SMC) and industrial standard P-controller.


Author(s):  
Hang Su ◽  
Junhao Zhang ◽  
Ziyu She ◽  
Xin Zhang ◽  
Ke Fan ◽  
...  

AbstractRemote center of motion (RCM) constraint has attracted many research interests as one of the key challenges for robot-assisted minimally invasive surgery (RAMIS). Although it has been addressed by many studies, few of them treated the motion constraint with an independent workspace solution, which means they rely on the kinematics of the robot manipulator. This makes it difficult to replicate the solutions on other manipulators, which limits their population. In this paper, we propose a novel control framework by incorporating model predictive control (MPC) with the fuzzy approximation to improve the accuracy under the motion constraint. The fuzzy approximation is introduced to manage the kinematic uncertainties existing in the MPC control. Finally, simulations were performed and analyzed to validate the proposed algorithm. By comparison, the results prove that the proposed algorithm achieved success and satisfying performance in the presence of external disturbances.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bhavnesh Panchal ◽  
S. E. Talole

A novel continuous time predictive control and generalized extended state observer (GESO) based acceleration tracking pitch autopilot design is proposed for a tail controlled, skid-to-turn tactical missile. As the dynamics of missile are significantly uncertain with mismatched uncertainty, GESO is employed to estimate the state and uncertainty in an integrated manner. The estimates are used to meet the requirement of state and to robustify the output tracking predictive controller designed for nominal system. Closed loop stability for the controller-observer structure is established. An important feature of the proposed design is that it does not require any specific information about the uncertainty. Also the predictive control design yields the feedback control gain and disturbance compensation gain simultaneously. Effectiveness of GESO in estimation of the states and uncertainties and in robustifying the predictive controller in the presence of parametric uncertainties, external disturbances, unmodeled dynamics, and measurement noise is illustrated by simulation.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1126
Author(s):  
Zhentao Hu ◽  
Linlin Yang ◽  
Yong Jin ◽  
Han Wang ◽  
Shibo Yang

Assuming that the measurement and process noise covariances are known, the probability hypothesis density (PHD) filter is effective in real-time multi-target tracking; however, noise covariance is often unknown and time-varying for an actual scene. To solve this problem, a strong tracking PHD filter based on Variational Bayes (VB) approximation is proposed in this paper. The measurement noise covariance is described in the linear system by the inverse Wishart (IW) distribution. Then, the fading factor in the strong tracking principle uses the optimal measurement noise covariance at the previous moment to control the state prediction covariance in real-time. The Gaussian IW (GIW) joint distribution adopts the VB approximation to jointly return the measurement noise covariance and the target state covariance. The simulation results show that, compared with the traditional Gaussian mixture PHD (GM-PHD) and the VB-adaptive PHD, the proposed algorithm has higher tracking accuracy and stronger robustness in a more reasonable calculation time.


2021 ◽  
Author(s):  
Giorgio Riva ◽  
Luca Mozzarelli ◽  
Matteo Corno ◽  
Simone Formentin ◽  
Sergio M. Savaresi

Abstract State of the art vehicle dynamics control systems do not exploit tire road forces information, even though the vehicle behaviour is ultimately determined by the tire road interaction. Recent technological improvements allow to accurately measure and estimate these variables, making it possible to introduce such knowledge inside a control system. In this paper, a vehicle dynamics control architecture based on a direct longitudinal tire force feedback is proposed. The scheme is made by a nested architecture composed by an outer Model Predictive Control algorithm, written in spatial coordinates, and an inner longitudinal force feedback controller. The latter is composed by four classical Proportional-Integral controllers in anti-windup configuration, endowed with a suitably designed gain switching logic to cope with possible unfeasible references provided by the outer loop, avoiding instability. The proposed scheme is tested in simulation in a challenging scenario where the tracking of a spiral path on a slippery surface and the timing performance are handled simultaneously by the controller. The performance is compared with that of an inner slip-based controller, sharing the same outer Model Predictive Control loop. The results show comparable performance in presence of unfeasible force references, while higher robustness is achieved with respect to friction curve uncertainties.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 128233-128249
Author(s):  
Mohammad Rokonuzzaman ◽  
Navid Mohajer ◽  
Saeid Nahavandi ◽  
Shady Mohamed

Author(s):  
N. S. Gopaul ◽  
J. G. Wang ◽  
B. Hu

An image-aided inertial navigation implies that the errors of an inertial navigator are estimated via the Kalman filter using the aiding measurements derived from images. The standard Kalman filter runs under the assumption that the process noise vector and measurement noise vector are white, i.e. independent and normally distributed with zero means. However, this does not hold in the image-aided inertial navigation. In the image-aided inertial integrated navigation, the relative positions from optic-flow egomotion estimation or visual odometry are <i>pairwise</i> correlated in terms of time. It is well-known that the solution of the standard Kalman filter becomes suboptimal if the measurements are colored or time-correlated. Usually, a shaping filter is used to model timecorrelated errors. However, the commonly used shaping filter assume that the measurement noise vector at epoch <i>k</i> is not only correlated with the one from epoch <i>k</i> &ndash; 1 but also with the ones before epoch <i>k</i> &ndash; 1 . The shaping filter presented in this paper uses Cholesky factors under the assumption that the measurement noise vector is pairwise time-correlated i.e. the measurement noise are only correlated with the ones from previous epoch. Simulation results show that the new algorithm performs better than the existing algorithms and is optimal.


Author(s):  
M P R Prasad

This paper considers kinematics and dynamics of Remotely Operated Underwater Vehicle (ROV) to control position, orientation and velocity of the vehicle. Cascade control technique has been applied in this paper. The pole placement technique is used in inner loop of kinematics to stabilize the vehicle motions. Model Predictive control is proposed and applied in outer loop of vehicle dynamics to maintain position and velocity trajectories of ROV. Simulation results carried out on ROV shows the good performance and stability are achieved by using MPC algorithm, whereas sliding mode control loses its stability when ocean currents are high. Implementation of proposed MPC algorithm and stabilization of vehicle motions is the main contribution in this paper.


Author(s):  
Zhi Qi ◽  
Qianyue Luo ◽  
Hui Zhang

In this paper, we aim to design the trajectory tracking controller for variable curvature duty-cycled rotation flexible needles with a tube-based model predictive control approach. A non-linear model is adopted according to the kinematic characteristics of the flexible needle and a bicycle method. The modeling error is assumed to be an unknown but bounded disturbance. The non-linear model is transformed to a discrete time form for the benefit of predictive controller design. From the application perspective, the flexible needle system states and control inputs are bounded within a robust invariant set when subject to disturbance. Then, the tube-based model predictive control is designed for the system with bounded state vector and inputs. Finally, the simulation experiments are carried out with tube-based model predictive control and proportional integral derivative controller based on the particle swarm optimisation method. The simulation results show that the tube-based model predictive control method is more robust and it leads to much smaller tracking errors in different scenarios.


Sign in / Sign up

Export Citation Format

Share Document