Theoretical Analysis of Engine Bearing Considering Both Elastic Deformation and Oil Film Temperature Distribution

Author(s):  
Minoru Hanahashi ◽  
Takeshi Katagiri ◽  
Yutaka Okamoto
2013 ◽  
Vol 331 ◽  
pp. 148-152
Author(s):  
Xiu Xu Zhao ◽  
Zhi Xiang Hu ◽  
An Jian Huang

According to the characteristics of large size, small clearance ratio, high oil film pressure and thin oil film thickness in the actual conditions of high power marine diesel engine bearing, this Paper analyzes oil film pressure distribution on inner surface of bearing bush based on the finite difference method, uses finite element method to establish the hierarchical model, and analyzes stress and strain distribution on bearing alloy. In addition, this Paper researches the changes of stress and strain distribution on bearing alloy layer when alloy layer thickness changes for the optimization design of high power marine diesel engine bearing bush.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Matteo Pelosi ◽  
Monika Ivantysynova

The piston/cylinder interface of swash plate–type axial piston machines represents one of the most critical design elements for this type of pump and motor. Oscillating pressures and inertia forces acting on the piston lead to its micro-motion, which generates an oscillating fluid film with a dynamically changing pressure distribution. Operating under oscillating high load conditions, the fluid film between the piston and cylinder has simultaneously to bear the external load and to seal the high pressure regions of the machine. The fluid film interface physical behavior is characterized by an elasto-hydrodynamic lubrication regime. Additionally, the piston reciprocating motion causes fluid film viscous shear, which contributes to a significant heat generation. Therefore, to fully comprehend the piston/cylinder interface fluid film behavior, the influences of heat transfer to the solid boundaries and the consequent solid boundaries’ thermal elastic deformation cannot be neglected. In fact, the mechanical bodies’ complex temperature distribution represents the boundary for nonisothermal fluid film flow calculations. Furthermore, the solids-induced thermal elastic deformation directly affects the fluid film thickness. To analyze the piston/cylinder interface behavior, considering the fluid-structure interaction and thermal problems, the authors developed a fully coupled simulation model. The algorithm couples different numerical domains and techniques to consider all the described physical phenomena. In this paper, the authors present in detail the computational approach implemented to study the heat transfer and thermal elastic deformation phenomena. Simulation results for the piston/cylinder interface of an existing hydrostatic unit are discussed, considering different operating conditions and focusing on the influence of the thermal aspect. Model validation is provided, comparing fluid film boundary temperature distribution predictions with measurements taken on a special test bench.


2021 ◽  
Author(s):  
Illia Petukhov ◽  
Taras Mykhailenko ◽  
Oleksii Lysytsia ◽  
Artem Kovalov

Abstract A clear understanding of the heat transfer processes in a gas turbine engine bearing chamber at the design stage makes it possible to properly design the lubrication and sealing systems and ensure the future bearing safe operation. The heat transfer coefficient (HTC) calculated based on the classical Newton-Richman equation is widely used to represent the heat transfer data and useful for the thermal resistance analysis. However, this approach is only formally applicable in the case of a two-phase medium. While there is a need to model a two-phase medium, setting the flow core temperature correctly in the Newton-Richman equation is an issue that is analyzed in this study. The heat from the flow core is transferred to the boundary of the oil film on the bearing chamber walls by an adjacent air and precipitating droplets. The analysis showed that droplet deposition plays a decisive role in this process and significantly intensifies the heat transfer. The main contribution to the thermal resistance of internal heat transfer is provided by the oil film. In this regard, the study considers the issues of the bearing chamber workflow modeling allowing to determine the hydrodynamic parameters of the oil film taking into account air and oil flow rates and shaft revolutions. The study also considers a possibility to apply the thermohydraulic analogy methods for the oil film thermal resistance determination. The study presents practical recommendations for process modeling in the bearing chamber.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 539
Author(s):  
Nebojsa Nikolic ◽  
Zivota Antonic ◽  
Jovan Doric ◽  
Dragan Ruzic ◽  
Stjepan Galambos ◽  
...  

The aim of this paper is to derive an equation for the temperature distribution in journal bearing oil film, in order to predict the thermal load of a bearing. This is very important for the prevention of critical regimes in a bearing operation. To achieve the goal, a partial differential equation of the temperature field was first derived, starting from the energy equation coupled with the Reynolds equation of hydrodynamic lubrication for a short bearing of symmetric geometry. Then, by solving the equation analytically, the function of temperature distribution in the bearing oil film has been obtained. The solution is applied to the journal bearing, for which the experimental data are available in the references. Finally, the obtained results have been compared to the corresponding experimental values for two operating regimes, and a good level of agreement was achieved.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


1998 ◽  
Vol 120 (1) ◽  
pp. 112-118
Author(s):  
Qin Yuan ◽  
D. C. Sun ◽  
D. E. Brewe

Part 2 begins by describing the numerical solution procedures of the hybrid lubrication problem. Results of the computation are then presented that include the detailed pressure and temperature distribution in the oil film, the required supply pressure for maintaining the prescribed minimum oil film thickness, the fluid friction acting on the worm coil surface, the mass flow rate of supply oil, and the power loss associated with the restrictor flow. The feasibility of the hydrostatically lubricated wormgear transmission is discussed in light of these results.


Sign in / Sign up

Export Citation Format

Share Document