scholarly journals An Analytical Method for the Determination of Temperature Distribution in Short Journal Bearing Oil Film

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 539
Author(s):  
Nebojsa Nikolic ◽  
Zivota Antonic ◽  
Jovan Doric ◽  
Dragan Ruzic ◽  
Stjepan Galambos ◽  
...  

The aim of this paper is to derive an equation for the temperature distribution in journal bearing oil film, in order to predict the thermal load of a bearing. This is very important for the prevention of critical regimes in a bearing operation. To achieve the goal, a partial differential equation of the temperature field was first derived, starting from the energy equation coupled with the Reynolds equation of hydrodynamic lubrication for a short bearing of symmetric geometry. Then, by solving the equation analytically, the function of temperature distribution in the bearing oil film has been obtained. The solution is applied to the journal bearing, for which the experimental data are available in the references. Finally, the obtained results have been compared to the corresponding experimental values for two operating regimes, and a good level of agreement was achieved.

Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


2000 ◽  
Vol 123 (3) ◽  
pp. 525-532 ◽  
Author(s):  
P. S. Keogh ◽  
M. M. Khonsari

A thermohydrodynamic (THD) analysis of a fully circumferentially grooved hydrodynamic bearing is presented. The pressure distribution is obtained using the short bearing approximation taking into account the viscosity variation in the radial and circumferential coordinates. The axial temperature variation is also included by an axial averaging technique, which incorporates the supply pressure and film entry temperature in the energy equation. It is found that the determination of the lubricant temperature at the entry to the film plays an important role in the overall temperature distribution in the bearing. A simplified approach for determining this temperature is presented. An extensive set of experimental results performed by Maki and Ezzat (1980, ASME J. Lubr. Technol., 102, pp. 8–14) is used for validation purposes. The results show that mixing in the inlet groove may cause the film entry temperature to be significantly different from the nominal supply temperature and hence have a significant influence on the bearing temperature.


2010 ◽  
Vol 297-301 ◽  
pp. 618-623 ◽  
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
Rachid Bennacer

In this work the influence of thermal effects on the performance of a finite porous journal bearing has been investigated using a thermo-hydrodynamic analysis. The Reynolds equation of thin viscous films is modified taking into account the oil leakage into the porous matrix, by applying Darcy’s law to determine the fluid flow in the porous media. The governing equations were solved numerically using the finite difference approach. Obtained result show a reduction in the performance of journal bearings when the thermal effects are accounted for and, this reduction is greater when the load capacity is significant.


Author(s):  
Lihua Yang ◽  
Weimin Wang ◽  
Lie Yu

In this paper, the analytic solutions of oil-film forces in infinite-short cylindrical journal bearing are calculated by solving its corresponding Reynolds equation. On this base, the linear and nonlinear dynamic coefficients of the bearing are predicted. By comparing the dynamic oil-film forces approximately represented by dynamic coefficients with the analytic solutions, the accuracy of this representation model is investigated. The results show that more orders of dynamic coefficients are included in representation model, the obtained approximate oil-film forces are more close to their analytic solutions. This can be a reference to illustrate the feasibility and applicability of representing oil-film forces by applying the dynamic coefficients of bearings.


2013 ◽  
Vol 380-384 ◽  
pp. 82-86 ◽  
Author(s):  
Song Sheng Li ◽  
Yu Xin Lu ◽  
Ma Li Dong ◽  
Juan Shao ◽  
Feng Yu

Journal bearing in high-speed working conditions will generate a lot of heat, which affects its working performance. Based on hydrodynamic lubrication theory, a model of the thermal hydrodynamic lubrication was built, and the distributions of temperatures and pressures of the oil film were obtained from the simultaneous solution of generalized Reynolds, energy and viscosity-temperature equations. The results show that the temperature will increase and the pressure decrease of the lubrication oil film with the rising of the rotating speed, which will make the the bearing capacity decrease. Compared with the traditional isothermal model, the thermal hydrodynamic lubrication model is more consistent with the engineering practice.


1970 ◽  
Vol 12 (2) ◽  
pp. 123-129 ◽  
Author(s):  
B. C. Majumdar

A theoretical investigation is made to predict the performance of an externally pressurized air journal bearing having several pressure sources. The pressure distribution, which leads to the determination of load-carrying capacity and flow requirement, is obtained by solving Reynolds equation numerically. The load and flow, expressed in non-dimensional parameters, are presented for different bearing design parameters (dimensionless). The results predicted by this method are compared with others' experimental data.


Author(s):  
Feng Liang ◽  
Quanyong Xu ◽  
Xudong Lan ◽  
Ming Zhou

The thermohydrodynamic analysis of oil film bearing is essential for high speed oil film bearing. The temperature field is coupled with the pressure field. The numerical model can be built or chosen according to the complexity of the objects and requirement of the accuracy. In this paper, four pressure-thermal (P-T) models are proposed, which are zero-dimensional temperature field coupled with Reynolds equation (0D P-T model), two-dimensional temperature field coupled with Reynolds equation (2D P-T model), two-dimensional temperature with third dimensional correction coupled with Dawson equation (2sD P-T model), three-dimensional temperature field coupled with Dawson equation (3D P-T model). The non-Newtonian and temperature-viscosity effects of the lubrication oil are considered in all the four models. Two types of cylindrical journal bearing, the bearing with/without axial grooves, are applied for the simulation. All the simulated cases are compared with the solutions of the CFX. The results show that the 0D P-T model fails to predict the behavior of high speed bearing; The 2D and 2sD P-T model have an acceptable accuracy to predict the performance of the bearing without grooves, but are not able to simulate the P-T field of the bearing with grooves because of the under-developed thermal boundary layer; The 2sD P-T model shows a great improvement when calculating the pressure field compared with the 2D P-T model; the 3D P-T model coincides well with the CFX at any condition. The comparison of these four models provides a reference to help designer choose a proper numerical model for a certain project.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
D. Souchet ◽  
A. Senouci ◽  
H. Zaidi ◽  
M. Amirat

In hydrodynamic lubrication, at very high rotational speed, the phenomenon of axial fluid leakage is often present. This can involve an increase of shear stress in the contact and consequently a considerable increase of the temperature. For that and in order to solve this problem, we took interest in the herringbone grooved journal bearings. The researches made before on these types of groove bearing have shown that they present a good dynamical behavior with a low eccentricity and a low axial flow. In this paper, a numerical study of a herringbone journal bearing operating behavior, under laminar and isothermal regime, is presented. The theoretical model, based on the classical Reynolds equation, is used. In order to include the film rupture and reformation, the Reynolds equation is modified using a mass conservative algorithm. To understand the behavior of these herringbone grooved journal bearings well, numerical modeling, using finite element method, has been developed. Various geometrical shapes of the herringbone grooved journal bearings have been analyzed, allowing us to limit the fluid leakage problem, by working particularly on the contact form.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Lintu Roy ◽  
S. K. Kakoty

This paper presents the various arrangements of grooving location of two-groove oil journal bearing for optimum performance. An attempt has been made to find out the effect of different configurations of two groove oil journal bearing by changing groove locations. Various groove angles that have been considered are 10°, 20°, and 30°. The Reynolds equation is solved numerically in a finite difference grid satisfying the appropriate boundary conditions. Determination of optimum performance is based on maximization of nondimensional load, flow coefficient, and mass parameter and minimization of friction variable using genetic algorithm. The results using genetic algorithm are compared with sequential quadratic programming (SQP). The two grooved bearings in general have grooves placed at diametrically opposite directions. However, the optimum groove locations, arrived at in the present work, are not diametrically opposite.


2012 ◽  
Vol 246-247 ◽  
pp. 790-794
Author(s):  
Kang Shao ◽  
Chang Wen Liu ◽  
Feng Rong Bi ◽  
Xia Wang ◽  
Jian Zhang

On the base of Reynolds equation, the dynamic load of an engine crankshaft main journal bearing system is studied. The oil film pressure is solved from the non-Newtonian Reynolds equation with non-linear model of a finite length journal bearing. The flexible crankshaft is coupling with hydrodynamic lubrication of bearing film. The elastohydrodynamic bearing is treated as non-linear bearing with the finite difference method when considered the unstability load that was acted on the main journal. This paper aims to identify the non-linear effect of engine main bearing in the case of unstability load.


Sign in / Sign up

Export Citation Format

Share Document