Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

Author(s):  
Zhi Wang ◽  
Jian-Xin Wang ◽  
Guo-hong Tian ◽  
Shi-Jin Shuai ◽  
Zhifu Zhang ◽  
...  
Author(s):  
Jacek Misztal ◽  
Hongming Xu ◽  
Miroslaw L. Wyszynski ◽  
Athanasios Tsolakis ◽  
Jun Qiao

Despite the fact that homogeneous charge compression ignition (HCCI) has been demonstrated as a combustion technology feasible for implementation with different fuels in various types of engines, cylinder-to-cylinder variations (CTCVs) in multicylinder HCCI engines remain one of the technical obstacles to overcome. A reduction in CTCV requires further developments in control technology. This study has been carried out with regard to the overall engine parameters, involving geometric differences between individual cylinders, coolant paths through the engine, combustion chamber deposits, and also the differences in the inlet temperature distributions between the cylinders. Experimental investigations on the Jaguar V6 HCCI research engine with negative valve overlapping and cam profile switching show that the differences in the rate of pressure rise between the cylinders can be larger than 1 bar/CA deg and that the load differences can be as high as 5–10%. It has been found that some individual cylinders will approach the misfiring limit far earlier than the others. The complex interaction between a number of parameters makes the control of the multicylinder engine a serious challenge. In order to avoid these differences, an active cylinder balancing strategy will be required. It has been observed that spark assistance and split injection strategy deliver the best control for the cylinder balance. However, spark assistance is restricted to low loads and low engine speeds, while split injection requires a considerable effort to optimize its possible settings. This paper defines the most important parameters influencing cylinder-to-cylinder variations in the HCCI engine and aims to put forward suggestions that can help to minimize the effect of cylinder-to-cylinder variations on the overall engine performance.


2020 ◽  
Vol 180 (1) ◽  
pp. 17-24
Author(s):  
Usama ELGHAWI ◽  
Ahmed MAYOUF ◽  
Athanasios TSOLAKIS

The study provides a qualitative and quantitative analysis of the C5-C11 hydrocarbon species generated in Spark Ignition – Homogeneous Charge Compression Ignition (SI/HCCI) gasoline direct injection (GDI) engine at range of operating conditions. The presented results and data were obtained from the combustion of winter grade commercial gasoline containing 2% w/w ethanol (C2H5OH) for the engine operated in steady-state, fully warmed-up condition. The hydrocarbon analysis in exhaust gases was executed on a Gas Chromatography-Mass Spectrometer (GC-MS) apparatus directly connected to the engine exhaust via heated line. The highest concentration of the total hydrocarbon emissions was obtained under low load HCCI engine operation at stoichiometric fuel-air ratio. The major hydrocarbon compounds detected in the collected samples were benzene, toluene, p-xylene, and naphthalene. Benzene originates from the incomplete combustion of toluene and other alkylbenzenes which are of considerable environmental interest. During the SI engine operation, increase of the engine speed and load resulted in the increase of benzene and the total olefinic species with simultaneous decrease in isopentane and isooctane. The same trends are seen with the engine operating under HCCI mode, but since the combustion temperature is always lower than SI mode under the same engine conditions, the oxidation of fuel paraffin in the former case was less. As a result, the total olefins and benzene levels in HCCI mode were lower than the corresponding amount observed in SI mode. Aromatic compounds (e.g., toluene), except for benzene, were produced at lower levels in the exhaust when the engine speed and load for both modes were increased.


Author(s):  
Nikhil Ravi ◽  
Matthew J. Roelle ◽  
J. Christian Gerdes

This paper presents experimental cycle-by-cycle control of a single cylinder HCCI engine. The controller is developed from a discrete-time nonlinear model presented in previous work. The model captures the behavior of a gasoline direct-injection engine with an exhaust-recompression strategy used to achieve HCCI. This model is linearized about an operating point so as to enable the synthesis of linear controllers. The model states are represented by the temperature and oxygen content of the retained exhaust, and so are not measurable in practice. Therefore, an observer is used to estimate the states based on a measured ignition proxy. The state estimates are then used by a reference-input tracking controller to track a desired system trajectory. Experimental results show tracking of the model outputs that is comparable to tracking achieved in simulation. The controller is also seen to reduce the cycle-to-cycle variability of combustion significantly, particularly at later combustion phasing. This stabilizes combustion, lowers the instances of misfires, and enables steady operation at points that are normally unstable.


Alloy Digest ◽  
2015 ◽  
Vol 64 (1) ◽  

Abstract Sandvik Pressurfect is an austenitic chromium-nickel stainless steel with low carbon content used for high-pressure gasoline direct injection (GDI) fuel system. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SS-1195. Producer or source: Sandvik Steel Company.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2099
Author(s):  
Jian Gao ◽  
Anren Yao ◽  
Yeyi Zhang ◽  
Guofan Qu ◽  
Chunde Yao ◽  
...  

The super-knock poses new challenges for further increasing the power density of spark ignition (SI) engines. The critical factors and mechanism connecting regarding the occurrence of super-knock are still unclear. Misfire is a common phenomenon in SI engines that the mixture in cylinder is not ignited normally, which is often caused by spark plug failure. However, the effect of misfire on engine combustion has not been paid enough attention to, particularly regarding connection to super-knock. The paper presents the results of experimental investigation into the relationship between super-knock and misfires at low speed and full load conditions. In this work, a boosted gasoline direct injection (GDI) engine with an exhaust manifold integrated in the cylinder head was employed. Four piezoelectric pressure transducers were used to acquire the data of a pressure trace in cylinder. The spark plugs of four cylinders were controlled manually, of which the ignition system could be cut off as demanded. In particular, a piezoelectric pressure transducer was installed at the exhaust pipe before the turbocharger to capture the pressure traces in the exhaust pipe. The results illustrated that misfires in one cylinder would cause super-knock in the other cylinders as well as the cylinder of itself. After one cylinder misfired, the unburned mixture would burn in the exhaust pipe to produce oscillating waves. The abnormal pressure fluctuation in the exhaust pipe was strongly correlated with the occurrence of super-knock. The sharper the pressure fluctuation, the greater the intensity of knock in the power cylinder. The cylinder whose exhaust valve overlapped with the exhaust valve of the misfired cylinder was prone to super-knock.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document