Gaseous and Particle Emissions Results from Light Duty Vehicle with Diesel Particle Filter

Author(s):  
Jerzy Merkisz ◽  
Jacek Pielecha ◽  
Wojciech Gis
2005 ◽  
Vol 121 (2) ◽  
pp. 46-55
Author(s):  
J. CZERWINSKI ◽  
J.-L. PÉTERMANN ◽  
A. ULRICH ◽  
G. MUELLER ◽  
A. WICHSER

Due to increasing concern about health effects of fine and ultra-fine particles (nanoparticles) from combustion engines, the diesel particle filter technology (DPF) was extensively introduced to heavy duty and passenger cars in the last years. In this respect, a very important parameter is the irreversible plugging of the DPF with non-combustible ashes. The quality of lubrication oil, especially the ash content has a certain influence on regeneration intervals of diesel particle filters. In the present study, the effects of different lubrication oils on particle mass and nano-particle size distribution were investigated. The test engine was a modern diesel engine without particle filter system. A main goal was to find out, how different lubrication oils influence the particulate emissions and the contribution of oil to total particle emissions. Moreover, first results of a tracing study will be discussed. The comparison of a non-doped lubrication oil with a doped oil should enlighten the contribution of the oil to the particle formation. It has been shown that beside sulphur content the particle emission is also effected by the composition (e.g. additive packages) of the oils.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1105 ◽  
Author(s):  
Reyes García-Contreras ◽  
Andrés Agudelo ◽  
Arántzazu Gómez ◽  
Pablo Fernández-Yáñez ◽  
Octavio Armas ◽  
...  

This work focuses on the potential for waste energy recovery from exhaust gases in a diesel light-duty vehicle tested under real driving conditions, fueled with animal fat biodiesel, Gas To Liquid (GTL) and diesel fuels. The vehicle was tested following random velocity profiles under urban driving conditions, while under extra-urban conditions, the vehicle followed previously defined velocity profiles. Tests were carried out at three different locations with different altitudes. The ambient temperature (20 ± 2 °C) and relative humidity (50 ± 2%) conditions were similar for all locations. Exergy analysis was included to determine the potential of exhaust gases to produce useful work in the exhaust system at the outlet of the Diesel Particle Filter. Results include gas temperature registered at each altitude with each fuel, as well as the exergy to energy ratio (percentage of energy that could be transformed into useful work with a recovery device), which was in the range of 20–35%, reaching its maximum value under extra-urban driving conditions at the highest altitude. To take a further step, the effects of fuels and altitude on energy recovery with a prototype of a thermoelectric generator (TEG) were evaluated.


2018 ◽  
Author(s):  
Vinay Premnath ◽  
Imad Khalek ◽  
Peter Morgan ◽  
Alexander Michlberger ◽  
Mike Sutton ◽  
...  

2016 ◽  
Vol 255 (1-2) ◽  
pp. 391-420 ◽  
Author(s):  
Boxiao Chen ◽  
Erica Klampfl ◽  
Margaret Strumolo ◽  
Yan Fu ◽  
Xiuli Chao ◽  
...  

Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


2018 ◽  
Vol 68 (6) ◽  
pp. 564-575 ◽  
Author(s):  
Qing Li ◽  
Fengxiang Qiao ◽  
Lei Yu ◽  
Shuyan Chen ◽  
Tiezhu Li

2018 ◽  
Author(s):  
Hamza Shafique ◽  
Brad Richard ◽  
Martha Christenson ◽  
Sandra Bayne

Sign in / Sign up

Export Citation Format

Share Document