Study on Boosted Direct Injection SI Combustion with Ethanol Blends and the Influence on the Ignition System

Author(s):  
Paulo Gomes ◽  
Rainer Ecker ◽  
Andre Kulzer ◽  
Andreas Kufferath ◽  
Ederson Conti
2014 ◽  
Vol 18 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Panneer John ◽  
Karuppannan Vadivel

In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.


2019 ◽  
Vol 22 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Ripudaman Singh ◽  
Taehoon Han ◽  
Mohammad Fatouraie ◽  
Andrew Mansfield ◽  
Margaret Wooldridge ◽  
...  

The effects of a broad range of fuel injection strategies on thermal efficiency and engine-out emissions (CO, total hydrocarbons, NOx and particulate number) were studied for gasoline and ethanol fuel blends. A state-of-the-art production multi-cylinder turbocharged gasoline direct injection engine equipped with piezoelectric injectors was used to study fuels and fueling strategies not previously considered in the literature. A large parametric space was considered including up to four fuel injection events with variable injection timing and variable fuel mass in each injection event. Fuel blends of E30 (30% by volume ethanol) and E85 (85% by volume ethanol) were compared with baseline E0 (reference grade gasoline). The engine was operated over a range of loads with intake manifold absolute pressure from 800 to 1200 mbar. A combined application of ethanol blends with a multiple injection strategy yielded considerable improvement in engine-out particulate and gaseous emissions while maintaining or slightly improving engine brake thermal efficiency. The weighted injection spread parameter defined in this study, combined with the weighted center of injection timing defined in the previous literature, was found well suited to characterize multiple injection strategies, including the effects of the number of injections, fuel mass in each injection and the dwell time between injections.


Author(s):  
James Sevik ◽  
Thomas Wallner ◽  
Michael Pamminger ◽  
Riccardo Scarcelli ◽  
Dan Singleton ◽  
...  

The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Muhammed Fayaz Palakunnummal ◽  
Priyadarshi Sahu ◽  
Mark Ellis ◽  
Marouan Nazha

Abstract Due to recent regulation changes to restricted fuel usage in various motor-sport events, motor-sport engine manufacturers have started to focus on improving the thermal efficiency and often claim thermal efficiency figures well above equivalent road car engines. With limited fuel allowance, motor-sport engines are operated with a lean air–fuel mixture to benefit from higher cycle efficiency, requiring an ignition system that is suitable for the lean mixture. Prechamber ignition is identified as a promising method to improve lean limit and has the potential to reduce end gas auto-ignition. This paper analyses the full-load performance of a motor-sport lean-burn gasoline direct injection (GDI) engine and a passive prechamber is developed with the aid of a computational fluid dynamics (CFD) tool. The finalized prechamber design benefited in a significant reduction in burn duration, reduced cyclic variation, knock limit extension, and higher performance.


Author(s):  
R. Anand ◽  
G. R. Kannan ◽  
P. Karthikeyan

The growing environmental concerns and the depletion of petroleum reserves have caused the development of alternative fuels. Biodiesel and alcohols are receiving increasing attention as alternative fuels for diesel engines due to well oxygenated, renewable fuels. In this study, a single cylinder, naturally aspirated, direct injection diesel engine has been experimentally investigated using ethanol-blended waste cooking oil methyl ester. Various proportion of biodiesel-ethanol blends were used in stability test at the different temperatures from 10 °C to 40 °C in the increment of 10°C. Based on the stability tests and improvement in fuel properties, B90E10 (90% biodiesel and 10% ethanol) and B80E20 (80% biodiesel and 20% ethanol) were selected for this investigation. Test results revealed that the improved engine characteristics with the use of B9E10 especially in comparison with B80E20. Reduction in brake thermal efficiency by 3.8% and slightly higher brake specific energy consumption of 15.1% were observed with B90E10 when compared to diesel at 100% load condition. Carbon monoxide, unburnt hydrocarbon, nitric oxide and smoke emission of B90E10 were reduced by 0.09% by vol., 10 ppm, 187 ppm and 12.9%, respectively compared to diesel. B90E10 exhibited lower peak pressure of 70.5 bar, slightly longer ignition delay of 14.2 °CA, and combustion duration of 43.3 °CA was also observed at 100% load condition.


Sign in / Sign up

Export Citation Format

Share Document