Development of an e-LSD Control Strategy Considering the Evolution of the Friction Torque with the Wear Depth

2016 ◽  
Vol 9 (3) ◽  
pp. 1902-1909 ◽  
Author(s):  
Amedeo Tesi ◽  
Francesco Vinattieri ◽  
Renzo Capitani ◽  
Claudio Annicchiarico
Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3146
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Dongyang Shang ◽  
Xingchao Qu

With the development of robot technology, integrated joints with small volume and convenient installation have been widely used. Based on the double inertia system, an integrated joint motor servo system model considering gear angle error and friction interference is established, and a joint control strategy based on BP neural network and pole assignment method is designed to suppress the vibration of the system. Firstly, the dynamic equation of a planetary gear system is derived based on the Lagrange method, and the gear vibration of angular displacement is calculated. Secondly, the vibration displacement of the sun gear is introduced into the motor servo system in the form of the gear angle error, and the double inertia system model including angle error and friction torque is established. Then, the PI controller parameters are determined by pole assignment method, and the PI parameters are adjusted in real time based on the BP neural network, which effectively suppresses the vibration of the system. Finally, the effects of friction torque, pole damping coefficient and control strategy on the system response and the effectiveness of vibration suppression are analyzed.


2019 ◽  
Vol 55 (18) ◽  
pp. 187 ◽  
Author(s):  
JIANG Renhua ◽  
LIU Chuang ◽  
NING Yinhang

2021 ◽  
Vol 11 (24) ◽  
pp. 12081
Author(s):  
Tiewei Sun ◽  
Min Wang ◽  
Xiangsheng Gao ◽  
Yingjie Zhao

In order to eliminate the calculation error of the Hertzian elastohydrodynamic contact stress due to the asymmetry of the contact region of the helix raceway, a non-Hertzian elastohydrodynamic contact stress calculation method based on the minimum excess principle was proposed. Firstly, the normal contact stresses of the screw raceway and the nut raceway were calculated by the Hertzian contact theory and the minimum excess principle, respectively. Subsequently, the Hertzian solution and the non-Hertzian solution of the elastohydrodynamic contact stress could be determined by the Reynolds equation under different helix angles and screw speeds. Finally, the friction torque test of the double-nut ball screws was designed and implemented on a self-designed bed for validation of the proposed method. The comparison showed that the experimental friction torque was the good agreement with the simulated friction torque, which verified the effectiveness and correctness of the non-Hertzian elastohydrodynamic contact stress calculation method. Under the large helix angle, the calculation accuracy of asperity contact stress for the non-Hertzian solution was more accurate than that of the Hertzian solution at the contact region of ball screws. Therefore, the non-Hertzian elastohydrodynamic contact stress considering the asymmetry of the raceway contact region could more accurately analyze the wear depth of the high-speed ball screws.


Author(s):  
Jianpeng Wu ◽  
Biao Ma ◽  
Heyan Li ◽  
Jikai Liu

Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutches in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated first by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature, before being demonstrated experimentally using a full scale powertrain test. After that, the verified heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox vehicle, capable of simulating the dynamic responses and predicting the temperature variations of two clutches. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250°C) is particularly adopted as an important metric. From the variations in torque and speed obtained from the simulation results, the vehicle can track the desired speed (1.5 km/h) satisfactorily, with only 3% fluctuation, and have good longitudinal dynamic performance (8.5 m/s3). But above all, during the entire 174 s creeping process, the temperature of two clutches is always under the safety value (250°C), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.


1980 ◽  
Author(s):  
Harold F. Engler ◽  
Esther L. Davenport ◽  
Joanne Green ◽  
William E. Sears

Sign in / Sign up

Export Citation Format

Share Document