Potentialities of Boot Injection Combined with After Shot for the Optimization of Pollutant Emissions, Fuel Consumption and Combustion Noise in Passenger Car Diesel Engines

2017 ◽  
Vol 10 (2) ◽  
pp. 144-159 ◽  
Author(s):  
Stefano D'Ambrosio ◽  
Alessandro Ferrari
2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Jonas Asprion ◽  
Oscar Chinellato ◽  
Lino Guzzella

In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines have become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.


MTZ worldwide ◽  
2007 ◽  
Vol 68 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Matthias Lamping ◽  
Thomas Körfer ◽  
Stefan Pischinger

Fuel ◽  
2009 ◽  
Vol 88 (9) ◽  
pp. 1608-1617 ◽  
Author(s):  
Georgios Fontaras ◽  
Georgios Karavalakis ◽  
Marina Kousoulidou ◽  
Theodoros Tzamkiozis ◽  
Leonidas Ntziachristos ◽  
...  

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Małgorzata Mrozik ◽  
Agnieszka Merkisz-Guranowska

The environmental safety of a car is currently one of the most important indicators of vehicle competitiveness and quality in the consumer market. Currently, assessment of the ecological properties of vehicles is based on various criteria. In the case of combustion-powered cars, most attention is usually paid to the values characterizing their use, and in terms of environmental assessment, pollutant emissions, and operational fuel consumption are key factors. The current article considers the possibility of using the life cycle assessment (LCA) method to analyze the ecological properties of a passenger car during its operation. A simplified LCA method for vehicles, which, in strictly defined cases, can be used for the analysis of environmental impact and assessment of the energy analysis related to its operation, is presented. For this purpose, a vehicle life cycle model is developed. Data on the operation of 33 passenger cars from different manufacturers with similar operational characteristics, coming from different production periods, are analyzed in detail. The vehicle use model takes into account the environmental load due to fuel consumption and pollutant emissions from the internal combustion engine, as well as processes related to the maintenance of the car. The obtained results show that, from the point of view of a car’s impact on the environment throughout its life cycle, the phase of its operation plays the most important role. For the annual operation period, the results of the analysis lead to the conclusion that, in the assessment of energy inputs and related emissions throughout the life cycle of a passenger car, the mileage of the car, which is determined by both the periodicity of replacement of elements and materials subject to normal wear and the length of the adopted period, is of key importance. For the tested vehicles, both the energy input resulting from fuel consumption as well as CO2 and SO2 emissions constitute about 94% to 96% of the total input during the annual operation of the vehicle.


ATZ worldwide ◽  
2016 ◽  
Vol 118 (10) ◽  
pp. 64-68
Author(s):  
Johannes Seifriedsberger ◽  
Peter Rumplmayr

2016 ◽  
Vol 1 (1-4) ◽  
pp. 47-56 ◽  
Author(s):  
Johannes Seifriedsberger ◽  
Peter Rumplmayr

2015 ◽  
Author(s):  
Frank Atzler ◽  
Michael Wegerer ◽  
Fabian Mehne ◽  
Stefan Rohrer ◽  
Christoph Rathgeber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document