λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

Author(s):  
Elliott Ortiz-Soto ◽  
Robert Wang ◽  
Masaki Nagashima ◽  
Matthew Younkins ◽  
Andreas Müller ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Mitsuhisa Ichiyanagi ◽  
Yi Kang ◽  
Bin Guo ◽  
Reina Saito ◽  
Kento Kajiki ◽  
...  

2020 ◽  
pp. 146808742097454
Author(s):  
Christoph Müller ◽  
Stefan Pischinger ◽  
Sascha Tews ◽  
Andreas Müller ◽  
Knut Habermann

To ensure that private cars can continue to be used in the future, they must become significantly more efficient and at the same time emit considerably less pollutants. In addition to pure electric drives, further optimized gasoline engines in hybrid powertrain configurations still offer major potentials in this respect. A major step toward increasing efficiency can be achieved by extremely lean burn combustion. If, in addition to low fuel consumption, this operation should also simultaneously reduce NOx raw emissions, lean-burn operation with relative air/fuel ratios of λ≥ 2 must be enabled in wide ranges of the engine operation map. Within the scope of this publication, results of experimental investigations with a lean burn pre-chamber ignition system applied to a small gasoline engine with 75 mm bore and 90.5 mm stroke are presented. In this context, the effects of the pre-chamber design on emissions and fuel consumption are examined. By comparing different pre-chamber enrichments with natural gas and conventional RON98 gasoline, it can be shown that with the direct liquid injection of gasoline into the pre-chamber similar good thermodynamic results as with natural gas can be achieved with the advantage of easier integration of a single fuel system. Due to its significantly improved lean burn capability with relative air/fuel rations of up to λ = 3, combined with low specific indicated NOx raw emissions of less than 0.1 g/kWh, the presented lean-burn combustion system offers excellent conditions for further efficiency improvements of electrified powertrains. WLTP cycle simulations based on measured engine maps for the developed combustion process resulted in a fuel consumption reduction of up to 10%. At the same time, NOx raw emissions below the Euro 6d limit of 60 mg/km can be achieved.


Author(s):  
Andreas Wimmer ◽  
Eduard Schnessl

High demands are placed on large gas engines in the areas of performance, fuel consumption and emissions. In order to meet all these demands, it is necessary to operate the engine in its optimal range. At high engine loads the optimal operation range becomes narrower as the engine comes closer to the knocking or to the misfire limit. The ambient conditions are of increasing importance in this range of operation. Variations in humidity influence the engine’s burn rate characteristics. An increase in humidity reduces the burn rate and increases the combustion duration. This increase in combustion duration has the same effect as retarding the time of ignition. Thus the thermal efficiency is reduced. Additionally, the engine is more likely to misfire as humidity increases. The cylinder temperature affects the engine fuel efficiency, knocking, exhaust gas temperature and particularly NOx emission. An increase in manifold air temperature results in higher NOx emission, heat transfer and knocking tendency. To avoid knocking, the time of ignition must be retarded resulting in lower engine efficiency. In this paper the effects of changes in humidity and temperature of the intake air on engine performance were examined in a lean burn pre-chamber natural gas engine. Tests on a single cylinder research engine were carried out. Effects on knocking and misfire limit, NOx emissions and fuel consumption were investigated depending on engine load. The interpretation of the results was supported by an extended analysis of losses.


2021 ◽  
pp. 146808742110163
Author(s):  
Sadi Tavakoli ◽  
Kamyar Maleki Bagherabadi ◽  
Jesper Schramm ◽  
Eilif Pedersen

As the emission legislation becomes further constraining, all manufacturers started to fulfill the future regulations about the prime movers in the market. Lean-burn gas engines operating under marine applications are also obligated to enhance the performance with a low emission level. Lean-burn gas engines are expressed as a cleaner source of power in steady loading than diesel engines, while in transient conditions of sea state, the unsteadiness compels the engine to respond differently than in the steady-state. This response leads to higher fuel consumption and an increase in emission formation. In order to improve the stability of the engine in transient conditions, this study presents a concept implementing a hybrid configuration in the propulsion system. An engine model is developed and validated in a range of load and speed by comparing it with the available measured data. The imposed torque into the developed engine model is smoothed out by implementing the hybrid concept, and its influence on emission reduction is discussed. It is shown that with the hybrid propulsion system, the NOX reduces up to 40% because of the maximum load reduction. Moreover, eliminating the low load operation by a Power Take In during incomplete propeller immersion, the methane slip declines significantly due to combustion efficiency enhancement.


2007 ◽  
Author(s):  
Nigel Clark ◽  
ABM S. Khan ◽  
W. Scott Wayne ◽  
Mridul Gautam ◽  
Gregory J. Thompson ◽  
...  

Author(s):  
Andy M. Williams ◽  
Alan T. Baker ◽  
Ramkumar Vijayakumar

Air systems are becoming increasingly complex and important for achieving IC engine performance and emission targets. Turbocharging is becoming increasingly prevalent enabling high power density engines, improved pumping work and improved fuel economy. Turbo-compounding allows turbine energy to contribute directly to crankshaft work with the aim of improving fuel economy. Turbodischarging allows turbine energy to be used to extract exhaust gases from the engine reducing pumping work and residual gas fraction while simultaneously increasing the amount of energy that can be recovered by the turbine(s). The optimum energy flow split between turbocharging, turbodischarging and turbocompounding has not previously been explored. This paper presents results of a study investigating the potential of tri-directional energy flow optimisation in comparison to uni-directional optimisation and bi-directional optimisation (i.e. using all three approaches, any two approaches or turbocharging alone). Thermodynamic analysis demonstrates the potential of bi-directional optimisation to achieve realistically 4% fuel consumption benefit for both turbocharging and discharging, and turbocharging and compounding on gasoline engines from pumping work alone. The peak benefit of the former occurs at a slightly lower engine torque than the latter as the energy cost of a unit fuel consumption benefit with turbodischarging increases with increasing levels of exhaust depressurisation. The Tri-directional optimisation shows a complex optimum position utilising all three systems and achieving a realistic peak benefit of 4.4% fuel consumption improvement. Optimisation on diesel engine architectures suggests significantly lower potential in the order of 1% benefit while lean burn gas engines showed up to 2.6% benefit. Sensitivity to compression and expansion efficiencies, exhaust manifold volume and system temperatures are presented. The future hybridisation of IC engine air systems may enable energy storage. This paper offers fundamental insight into the marginal fuel cost of capturing energy from the three systems and the marginal fuel value of using stored energy in the air system.


Author(s):  
Kangda Chen ◽  
Fuquan Zhao ◽  
Xinglong Liu ◽  
Han Hao ◽  
Zongwei Liu

As a main measure to promote the development of China’s energy–saving and new energy vehicles, the Phase V fuel consumption regulation is dramatically different from the past four phases, especially in the test procedure, moving from the New European Driving Cycle (NEDC) to the worldwide harmonized light duty test cycle (WLTC) and corresponding test procedure (WLTP). The switch of test procedure will not only affect the effectiveness of technologies but also change the fuel consumption target of the industry. However, few studies have systematically investigated the impacts of the new WLTP on the Chinese market. This study establishes a “technology–vehicle–fleet” bottom–up framework to estimate the impacts of test procedure switching on technology effectiveness and regulation stringency. The results show that due to the WLTP being closer to the real driving condition and more stringent, almost all baseline vehicles in the WLTP have higher fuel consumption than that in the NEDC, and diesel vehicles are slightly more impacted than gasoline vehicles. In addition, the impacts are increased with the strengthening of electrification, where the fuel consumption of plug–in hybrid electric vehicles (PHEVs) and range-extended electric vehicles (REEVs) in the WLTP are about 6% higher than that in the NEDC. Engine technologies that gain higher effects in low load conditions, such as turbocharging and downsizing, fuel stratified injection (FSI), lean–burn, and variable valve timing (VVT), are faced with deterioration in the WLTP. Among these, the effect of turbocharging and downsizing shows a maximum decline of 8.5%. The variable compression ratio (VCR) and stoichiometric gasoline direct injection (SGDI) are among the few technologies that benefited from procedure switching, with an average improvement of 1.6% and 0.2% respectively. Except for multi–speed transmissions, which have improvement effects in the WLTP, all automatic transmissions are faced with decreases. From the perspective of the whole fleet and national regulation target, the average fuel consumption in the WLTP will increase by about 7.5% in 2025 compared to 4 L/100 km in the NEDC. According to the current planning of the Chinese government, the fuel consumption target of Phase V is set at 4.6 L/100 km in 2025, which is equivalent to loosening the stringency by 0.3 L/100 km. In Phase VI, the target of 3.2 L/100 km is maintained, which is 30.4% stricter than that of Phase V, and the annual compound tightening rate reaches 7.5%. This means that automakers need to launch their product planning as soon as possible and expand the technology bandwidth to comply with the Phase VI fuel consumption regulation, and the government should evaluate the technical feasibility before determining the evaluation methods and targets of the next phase.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


Sign in / Sign up

Export Citation Format

Share Document