Experimentation and Comparison of Engine Performance, NOx Reduction and Nano Particle Emission of Diesel, Algae, Karanja and Jatropha Oil Methyl Ester Biodiesel with CeO2 Fuel Additive in a Military Heavy Duty 582 kW CIDI Diesel Engine

2021 ◽  
Author(s):  
Anand Pandey ◽  
Milankumar Nandgaonkar ◽  
Meena Laad ◽  
Ketan Kotecha ◽  
Suresh sambasivan ◽  
...  
Author(s):  
J. G. Suryawanshi ◽  
N. V. Deshpande

Biodiesel is a non-toxic, biodegradable and renewable fuel with the potential to reduce engine exhaust emissions. The methyl ester of jatropha oil, known as biodiesel, is receiving increasing attention as an alternative fuel for diesel engines. The biodiesel is obtained through transesterification process. Various properties of the biodiesel thus developed are evaluated and compared in relation to that of conventional diesel oil. In the present investigation neat jatropha oil methyl ester (JME) as well as the blends of varying proportions of jatropha oil methyl ester (JME) and diesel were used to run a CI engine. A four stroke diesel engine having compression ratio of 17.5: 1 and developing 5.2 kW at 1500 rpm was used. Experiments were initially carried out on the engine at all loads using diesel to provide baseline data. Significant improvements in engine performance and emission characteristics were observed for JME fuel. The addition of jatropha methyl ester (JME) to diesel fuel has significantly reduced HC, CO, CO2 and smoke emissions but it increases the NOx emission slightly. The maximum reduction in smoke emission was observed by 35% in case of neat biodiesel operation as compared to diesel. The unburned hydrocarbon emission was drastically reduced by 53% for neat biodiesel operation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


Author(s):  
Bhaskar Tamma ◽  
Juan Carlos Alvarez ◽  
Aaron J. Simon

Reduction in emissions, especially NOx has been the main study of various engine researchers in the light of stringent emission norms. To reduce the time and cost involved in testing these technologies, engine thermodynamic cycle predictive tools are used. The present work uses one such predictive tool (GT Power from Gamma Technologies) for predicting the influence of water addition in a turbocharged 6-cylinder diesel engine intake on engine performance and NOx emissions. The experiments for comparison with modeling included the introduction of liquid water in the engine intake stream, between the compressor and intercooler ranging from 0 to 100% of fuel flow rate. NOx emission reduced linearly with water addition with reduction of 63% with less than 1% penalty on fuel efficiency at 100% water addition. The GT Power model predicted the performance within 5% of experimental data and NOx emission within 10% of the experiments.


Sign in / Sign up

Export Citation Format

Share Document