On the Effect of Low-Viscosity Oil on Automobile Pollutant Emissions Based on Worldwide Harmonized Light Vehicles Test Cycle

2021 ◽  
Author(s):  
Jun Wang ◽  
Yimin Mo ◽  
Ye Hong ◽  
Qingchun Liu ◽  
Juncheng Lv
2021 ◽  
Vol 268 ◽  
pp. 01052
Author(s):  
Guangyao Wang ◽  
Hongyu Qin ◽  
Deyu Meng ◽  
Ziye Wang

Basing on the experimental study of fuel consumbtion in World-wide Harmonized Light-duty Test Cycle (WLTC ), this paper conducted the effects of using different immersion temperature on the fuel consumption of a light-duty gasoline vehicle. The study mainly studied the first phase of WLTC with three gaseous pollutant emissions: carbon dioxide, carbon monoxide and unburned hydrocarbon(CO2, CO and HC )which is measured to caculate the fuel consumption of Light-duty Gasoline Vehicles. It appears that with the increase of time the working condition of the vehicle tends to be stable resulting in the similar emission of the gaseous pollutant in the different test. Which means the immersion temperature mainly effects gaseous pollutant emissions in low-speed phase in WLTC. Besides, the cold start of engine had generated a large quantity of carbon monoxide and unburned hydrocarbon, but it is different for the carbon dioxide which was generated continuously in the first whole phase. The study also found that the use of a higher immersion temperatures (26℃) is more favorable than a lower immersion temperatures (23℃) in the typy of testing vehicle’s fuel consumption in the WLTC test cycle.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8101
Author(s):  
Piotr Bielaczyc ◽  
Wojciech Honkisz ◽  
Joseph Woodburn ◽  
Andrzej Szczotka ◽  
Fabrizio Forloni ◽  
...  

The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, and most importantly there are no published studies comparing the results of different laboratories applying the new cycle. In this study we compared the particle and gaseous pollutants of one Euro 4 motorcycle measured in two laboratories in 2017 and 2020. The gaseous pollutant results had a variance (one standard deviation of the means) of 0.5% for CO2, 4–19% for CO, NOx, HC (hydrocarbons) and SPN (Solid Particle Number). The particulate matter mass results had higher variance of 50–60%. Additional tests with open configuration to mimic dilution at the tailpipe gave equivalent results to the closed configuration for the gaseous pollutants and SPN. The total particles (including volatiles) had significant differences between the two configurations, with the closed configuration giving higher results. The main conclusion of this study is that the new procedures have very good reproducibility, even for the SPN that is not regulated for L-category vehicles. However, the measurement of total particles needs attention due to the high sensitivity of volatile particles to the sampling conditions.


2020 ◽  
pp. 146808742096120
Author(s):  
Francisco Jose Arnau ◽  
Jaime Martín ◽  
Pedro Piqueras ◽  
Ángel Auñón

As well as new advances in the after-treatment systems are required to achieve the new pollutant emission requirements, new designs of the exhaust line can be considered in order to increase the engine efficiency and the after-treatment effectiveness. In the present work, a one-dimensional gas dynamic model has been used to carry out a simulation study comparing several exhaust insulation solutions. This solutions include the insulation of the exhaust ports, the exhaust manifold, the internal surface of the turbine volute, the turbine external housing, as well as different combinations of these solutions. A transient analysis has been done in order to evaluate the increment in the exhaust gases temperature, fuel economy and pollutant emission levels over the WLTC (Worldwide harmonized Light vehicles Test Cycle) at three different temperature conditions. As a conclusion, a 12% increment in the turbine outlet gas enthalpy can be achieved by insulating both the exhausts ports and the exhaust manifold. Moreover, more than 30% less pollutant emissions are released to the environment with this setup.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1278 ◽  
Author(s):  
José Serrano ◽  
Pedro Piqueras ◽  
Ali Abbad ◽  
Roberto Tabet ◽  
Stefan Bender ◽  
...  

The impact of Euro 4 compression ignition engines over the air quality in Europe has been analyzed in this work by comparing them with Euro 6d emissions regulation. The Euro 6d diesel engine has been chosen as the preferred replacement according to its advantages in global warming potential (GWP) emissions, like methane hydrocarbons (MHC) and CO2, with respect to Euro 6d petrol-based powertrains. The motivation for this study is that the effects of the emissions reduction policies, as the implementation of the regulation Euro 6d, are necessarily limited due to the great number of passenger cars still in circulation that were homologated under Euro 4 or older standards. To address the impact of the old vehicle pool, a Worldwide harmonized Light-vehicles Test Cycle (WLTC) has been used to analyze the performance and pollutant emissions of a Euro 4 diesel engine in altitude conditions. This driving cycle and engine are considered as a baseline for the subsequent discussion, where the altitude plays a key role because of the European geography. It forces passenger cars to drive over sea level during a significant number of trips. Thus, an analysis of how significant would be the impact of energy policies promoting the substitution of the pre-Euro 5 diesel fleet (>10 years old) by modern Euro 6d engines in the short term on the pollutants and GWP emissions reduction is presented.


Author(s):  
Carlos Guardiola ◽  
Benjamin Pla ◽  
Javier Mora Pérez ◽  
Damien Lefebvre

After-treatment systems are necessary to respect the pollutant emissions thresholds specified by regulations. However, due to system ageing, the efficiency of the after-treatment system may decrease and affect the vehicle emissions during real driving conditions. To address this issue, the model presented in this article is based on the on-engine tests performed to a set of diesel oxidation catalysts with different ageing levels, through which the ageing process is characterized. Then, the model is able to simulate the light-off temperature and slip increase due to ageing, and it is applied to a Worldwide Harmonized Light Vehicles Test Cycle for a new and a thermally aged catalysts.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


Sign in / Sign up

Export Citation Format

Share Document